

BSO Crystals for the HHCAL Detector Concept

Fan Yang¹, Hui Yuan², Liyuan Zhang¹, Ren-Yuan Zhu¹

¹ California Institute of Technology ² Shanghai Institute of Ceramics

O4-19, Calor2014, April 10, 2014, Giessen, Germany

Homogeneous Hadronic Calorimeter

A Fermilab team (A. Para et al.) proposed a total absorption homogeneous hadronic calorimeter (HHCAL) detector concept to achieve good jet mass resolution at ILC/CLIC by measuring both Cherenkov and Scintillation light.

Requirements for the Materials:

- Cost-effective material: for 70~100 m³
 Short nuclear interaction length: ~ 20 cm.
- Good UV transmittance: UV cut-off < 350 nm, for readout of Cherenkov light.
- Some scintillation light, not necessary bright and fast.
 - Discrimination between Cherenkov and scintillation lights, in spectral or temporal domain.
- Radiation hardness is not crucial at the ILC/CLIC.

Cost-effective, dense, UV transparent crystals with both scintillation and Cherenkov light

Parameters	Bi ₄ Ge ₃ O ₁₂ (BGO)	PbWO₄ (PWO)	PbF ₂	PbFCI	Bi ₄ Si ₃ O ₁₂ (BSO)
ρ (g/cm³)	7.13	8.29	7.77	7.11	6.8
λ _l (cm)	22.8	20.7	21.0	24.3	23.1
n@λ _{max}	2.15	2.20	1.82	2.15	2.06
τ _{decay} (ns)	300	30/10	?	3	100
λ _{max} (nm)	480	425/420	?	420	470
Cut-off λ (nm)	310	350	250	280	300
Light Output (%)	100	1.4/0.37	?	2	20
Melting point (°C)	1050	1123	842	608	1030
Raw Material Cost (%)	100	49	29	29	47

IEEE Trans. Nucl. Sci. 59 (2012) 2229-2236

4/10/2014

BSO Samples

Experiments

 Longitudinal Transmittance (LT), Light Response Uniformity (LRU) and Light Output (LO) were measured at room temperature before, during and after the irradiation processes.

Longitudinal Transmittance

The LT of SIC2211 between 500 to 800 nm approaches the theoretical limit There is no obvious absorption band observed in the LT of SIC1309

There are absorption centers or scattering centers in all the samples. LT of SIC2211 & SIC1309 implies that the quality of BSO crystals can be improved

LO and Decay Kinetics

All four samples show consistent decay time of about 100 ns.

SIC1309 shows the highest LO because of its better LT.

4/10/2014

O4-19, Calor2014, Giessen, Germany

Pulse Height Spectra

The average energy resolution (FWHM) of all samples is about 45%.

Sample SIC1309 has the best ER: 37%.

LRU with Alternative Coupling Ends

The LRUs of SIC1309 approaches 0% for both end couplings, which is the ideal LRU for a rectangular crystal with good transparency.

The negative δ values of -2% for other 3 samples indicate a significant internal absorption.

Damage in SIC2223 does not recover, so is not dose rate dependent SIC2223 was irradiated with defined integrated dose step by step

O4-19, Calor2014, Giessen, Germany

LRU and LO of SIC2223 before and after IR

The damage in both EWLT and LO is saturated after 10⁵ rad, indicating that the total defect density is limited.

Radiation damage in EWLT & LO

Damage in SIC1305, 1309 and 2211 recovers, so is dose rate dependent. They were irradiated with fixed dose rate
 SIC1309 is the best in radiation hardness

LT during Irradiation at 30 rad/h

Sample SIC1309 has the lowest degradation

LRU During Irradiations at 30 rad/h

LRU of 1305 changed significantly while that of 1309 did not

Color Center Analysis for SIC2223 (no recovery)

Color Center Analysis for SIC1309

3 Gaussian bands are needed to fit RIAC in SIC1309

Color Center Analysis for SIC 1305/221

4 Gaussian bands are needed for SIC1305/2211

Summary of RIAC Analysis

Measurements of recovery are under way to understand the dynamics of defect centers

		Color Center 1		Color Center 2		Color Center 3			Color Center 4				
		A ₁	E ₁	σ ₁	A ₂	E ₂	σ2	A ₃	E ₃	σ3	A ₄	E ₄	σ_4
	10 ² rad	-	-	-	0.47	2.97	0.64	0.60	3.65	0.25	-	-	-
BSO SIC2223	10 ⁴ rad	-	-	-	2.07	2.97	0.64	1.62	3.65	0.25	-	-	-
	10 ⁶ rad	-	-	-	2.53	2.97	0.64	2.07	3.65	0.25	-	-	-
	2 rad/h	1.13	2.31	0.14	0.78	2.97	0.16	1.62	3.65	0.40	5.32	3.97	1.10
BSO SIC2211	8 rad/h	2.18	2.31	0.14	1.69	2.97	0.16	3.74	3.65	0.40	9.87	3.97	1.10
	30 rad/h	3.08	2.31	0.14	2.51	2.97	0.16	5.41	3.65	0.40	14.17	3.97	1.10
	2 rad/h	0.92	2.31	0.14	0.41	2.97	0.16	1.62	3.65	0.40	3.40	3.97	1.10
BSO SIC1305	8 rad/h	2.18	2.31	0.14	1.60	2.97	0.16	4.64	3.65	0.40	6.93	3.97	1.10
	30 rad/h	3.04	2.31	0.14	2.37	2.97	0.16	6.95	3.65	0.40	9.96	3.97	1.10
	2 rad/h	0.23	2.31	0.29	0.80	2.97	0.34	1.22	3.65	0.35	-	-	-
BSO SIC1309	8 rad/h	0.56	2.31	0.29	1.22	2.97	0.34	2.08	3.65	0.35	-	-	-
	30 rad/h	0.77	2.31	0.29	1.36	2.97	0.34	2.38	3.65	0.35	-	-	-

4/10/2014

Summary

- BSO crystals are a good candidate material for the HHCAL detector concept because of (1) high density of 6.8 g/cm³, (2) good UV cut-off edge at 300 nm, (3) emission peak at 470 nm, (4) 100 ns scintillation decay time, (5) good light output (20% of BGO) and (6) potential low cost,.
- SIC2211 shows good transmittance approaching the theoretical limit at wavelength of longer than 500 nm.
- SIC1309 shows an improvement in transmittance, light output and light response uniformity. Its radiation hardness under gamma-ray irradiations is also better than other samples.
- Progresses have been made in the crystal growth at SIC. BSO crystals satisfying HHCAL specifications, however, need to be developed after further improvement.
- Color center analysis shows BSO crystals of three types. More works are needed to further understand the origin and dynamics of these color centers.