

Emission Spectra of LSO and LYSO Crystal Scintillators Excited by UV Light, X-ray and γ-ray

Liyuan Zhang, Rihua Mao and Ren-yuan Zhu

California Institute of Technology

Introduction

We reported at Puerto Rico (NSS05, N12-6) a comparison of light output of large size (2.5 x 2.5 x 20 cm) LSO and LYSO samples, and found that a CTI LSO has a higher light output with APD readout, but not with PMT readout. This anomaly disappeared after γ -ray irradiation to 1 Mrad.

Quantum efficiency and Emission

Why? The LSO sample had an emission peaked at longer wavelength under γ -ray excitation, and the emission was changed after γ -ray irradiations.

Can we prove it?

Six Large LSO and LYSO Samples

2.5 x 2.5 x 20 cm (18 X₀) Bar

Three CTI LSO samples are provided by Chuck Melcher.

Three LYSO samples are purchased from Saint-Gobain.

System Checks

UV (θ =0°), X-ray and γ -ray excited emission spectra are consistent UV (θ =10°) excited emission has a blue shift because of no absorption

LYSO Emission

UV (θ =0°) and γ -ray excited emission spectra are consistent UV (θ =10°) excited emission has a strong blue shift (See N49-1) X-ray excited emission is slightly narrow. Why?

X-ray Excited Emission Narrow

The narrow X-ray excited emission spectra of LYSO may be explained by a surface effect since X-ray does not penetrate.

LSO Emission

All emission spectra are similar to that of LYSO, except that γ -ray excited emission has a "red shift", which disappeared after irradiations with γ -ray.

4 LSO Decay Time and Light Output EFE

The irradiated end (ID) has no change in decay time. Its light output degradation is half of that of the NID end because of the emission "blue shift".

LSO Uniformity with PMT Readout

The emission "blue shift" of the irradiated end causes a relative larger LO for the PMT readout.

Before irradiation

After irradiation

LYSO Uniformity with PMT Readout

No significant variations in the light output and light response uniformity for the PMT readout

Before irradiation

After irradiation

UV Excited Emission Spectra of Two Halves of the LSO Sample

The γ -ray irradiated half shows less long wavelength emission when excited at 325 nm and 380 nm.

UV Excited Emission Spectra of Two Halves of the LYSO Sample

The γ -ray irradiated half shows consistent emission as the non irradiated half when excited at 325 nm and 380 nm.

NM1-2, Liyuan Zhang, Caltech

Ce³⁺ Luminescence Centers in LSO

J.D. Naud et. al., IEEE Trans. Nuclear Sci., Vol.43, p1324, June 1996

Ce1: two regular Lu³⁺ crystallographic sites, ex: 360 nm, em: 430 nm Ce2: irregular sites, proposed "interstitial site", ex: 325 nm, em: 500 nm

NM1-2, Liyuan Zl.....,

Conclusions

- A strong blue shift of the photo luminescence (θ=10°) in LSO/LYSO is attributed to its self absorption.
- A narrow X-ray excited emission spectra in LSO/LYSO seems caused by a surface effect
- A broader γ-ray excited emission spectrum with a "red shift" as compared to the X-ray and UV excited emission spectra is observed in large size LSO samples. This shift disappeared after γ-ray irradiations. This observation consists with the light output and uniformity data and with what reported in NSS05 at Puerto Rico.
- No such shift was observed in large size LYSO samples.
- We tentatively attribute this shift to the contribution of the "irregular" sites of Ce³⁺ (the component around 450 nm). The fact that it can be "cured" more or less by γ-ray irradiations supports that this site is a defect perturbed irregular site of Ce³⁺.