

Spatial Resolution of Crystal Based Hard X-ray Imager

Chen Hu¹, Liyuan Zhang¹, Ren-Yuan Zhu¹, Junfeng Chen², Dongzhou Ding²,

Yu Wang³ and Mingrong Zhang⁴

¹ California Institute of Technology

² Shanghai Institute of Ceramic

³ Sichuan Tianle Photonics Co., LTD

⁴ Beijing Glass Research Institute

October 1, 2019

Paper O1-5-4 presented in SCINT 2019, Sendai, Japan

Inorganic Scintillator-Based Imager for GHz Hard X-ray Imaging

Requirements:	Fast inter-frame & hard x-ray require ultrafast sensor in bulk						
Performance	Type I imager	Type II imager					
X-ray energy	up to 30 keV	42-126 keV					
Frame-rate/inter-frame time	0.5 GHz / 2 ns	3 GHz / 300 ps					
Number of frames per burst	≥ 10	10 - 30					
X-ray detection efficiency	above 50%	above 80%					
Pixel size/pitch	≤ 300 μm	< 300 μm					
Dynamic range	10 ³ X-ray	≥ 10 ⁴ X-ray					
	Photons/pixel/frame	Photons/pixel/frame					
Pixel format	64 × 64 ^a (scalable to 1 Mpix)	1 Mpix					

- With 0.5 ns decay time BaF₂ provides high light output in the 1st ns and a good efficiency for hard X-rays from 30 to 126 keV.
- Yttrium doping in BaF₂ suppresses its slow scintillation significantly and maintains its ultrafast scintillation light.
- A total absorption front imager:
 - Pixelated ultrafast crystal screen;
 - Pixelated ultrafast photodetector;
 - Ultrafast electronics readout.
- This paper discusses spatial resolution for such imager.

12 Fast Scintillators Tested at APS

	BaF ₂	BaF ₂ (:Y)	ZnO (:Ga)	YAP (:Yb)	YAG (:Yb)	β- Ga₂O₃	LYSO (:Ce)	LuAG (:Ce)	YAP (:Ce)	GAGG (:Ce)	LuYAP (:Ce)	YSO (:Ce)
Density (g/cm ³)	4.89	4.89	5.67	5.35	4.56	5.94 ^[1]	7.4	6.76	5.35	6.5	7.2 ^f	4.44
Melting points (°C)	1280	1280	1975	1870	1940	1725	2050	2060	1870	1850	1930	2070
X _o (cm)	2.03	2.03	2.51	2.77	3.53	2.51	1.14	1.45	2.77	1.63	1.37	3.10
R _M (cm)	3.1	3.1	2.28	2.4	2.76	2.20	2.07	2.15	2.4	2.20	2.01	2.93
λ _ι (cm)	30.7	30.7	22.2	22.4	25.2	20.9	20.9	20.6	22.4	21.5	19.5	27.8
Z _{eff}	51.6	51.6	27.7	31.9	30	28.1	64.8	60.3	31.9	51.8	58.6	33.3
dE/dX (MeV/cm)	6.52	6.52	8.42	8.05	7.01	8.82	9.55	9.22	8.05	8.96	9.82	6.57
λ _{peak} ª (nm)	300 220	300 220	380	350	350	380	420	520	370	540	385	420
Refractive Index ^b	1.50	1.50	2.1	1.96	1.87	1.97	1.82	1.84	1.96	1.92	1.94	1.78
Normalized Light Yield ^{a,c}	42 4.8	1.7 4.8	6.6 ^d	0.19 ^d	0.36 ^d	6.5 0.5	100	35° 48°	9 32	115	16 15	80
Total Light yield (ph/MeV)	13,000	2,000	2,000 ^d	57 ^d	110 ^d	2,100	30,000	25,000°	12,000	34,400	10,000	24,000
Decay time ^a (ns)	600 <mark>0.5</mark>	600 <mark>0.5</mark>	<1	1.5	4	148 <mark>6</mark>	40	820 50	191 25	53	1485 36	75
LY in 1 st ns (photons/MeV)	1200	1200	610 ^d	28 ^d	24 ^d	43	740	240	391	640	125	318
40 keV Att. Leng. (1/e, mm)	0.106	0.106	0.407	0.314	0.439	0.394	0.185	0.251	0.314	0.319	0.214	0.334

10/1/2019

X-ray Attenuation Length in Crystals

Five $\lambda @ 100$ keV: 5 and 2 mm for BaF₂ and LYSO, respectively

10/1/2019

BaF₂ Pulses in Lab and APS

3.1& 0.92 ns pulse width measured by PMT (top) & MCP-PMT (bottom) with a decay time of 0.52 ns. 5 mm BaF_2 plates resolve well 30 keV X-ray septuplets of 27 ps width with 2.83 ns spacing at APS (right), demonstrating GHz capability.

X-ray Imaging with CCD Cameras

Spatial resolution of pixelated and monolithic crystal screens measured by PCO & Princeton CCD cameras for ~8 keV X-rays from an AmpTek ECLIPSE-III tube

Light tight and X-ray shielding box

Pixelated Crystal Screens

SIC LYSO:Ce

Tianle LYSO:Ce

BGRI BaF₂

SIC BaF₂:Y

Crystal	Dimension (mm³)	Pitch (mm)	Gap (mm)	Depth (mm)	Reflector	# of Wrapped faces	Vendor	# of λ (40 keV X-ray)	# of samples
LYSO:Ce	20×20×1	0.40	0.12	0.7	TiO ₂	4	SIC	5.4	2
LYSO:Ce	20×20×1	0.828	0.08	1	ESR	4	Tianle	5.4	6
BaF ₂	20×20×5	0.98	0.18	4	TiO ₂	5	BGRI	47.2	1
BaF ₂ :Y	20×20×5	0.98	0.18	4.5	BaSO ₄	4	SIC	47.2	1

Screens with a pitch down to 300 μ m produced by mechanical slicing Laser dicing may reach down to 25 μ m: See US patent US6087618A

10/1/2019

Pixelated LYSO and BaF₂ Screens

SIC and BGRI crystal screens are not cut-through

X-ray Imaging by PCO Camera (I)

Spatial resolution and dynamic range defined by crystal pitch and thickness, respectively

X-ray Imaging by PCO Camera (II)

SIC LYSO with 400 µ pitch

BGRI BaF₂ with 980 μ pitch

CIT Phantom

Resolution of 25 µ may be reached by crystal screens with laser dicing

Monolithic Crystal Screens

SIC LYSO:Ce

BGRI BaF₂

SIC BaF₂:Y

Crystal	Dimension (mm³)	Producer	# of λ (40 keV X-ray)	Amount
LYSO:Ce	10×10×3	SIC	16.2	1
LYSO:Ce	10×10×5	SIC	27.0	1
BaF ₂	20×20×1	BGRI	9.4	1
BaF ₂	20×20×5	BGRI	47.2	1
BaF ₂ :Y	20×20×1.5	SIC	14.1	1
BaF ₂ :Y	13×13×3	SIC	28.3	1
BaF ₂ :Y	13×13×5	SIC	47.2	1

Line-Pair Pattern Phantom and Modulation Transfer Function (MTF)

Object Image Representative Lens/ Lens Assenbly White White 20% Contrast 100% Contrast Black Black LP/mm 1.5 TYPE X-ray imaging line-pair pattern

The MTF value is defined as an average of 8 values for 5 peaks and 4 valleys

Spatial Resolution vs. Screen Thickness and Optical Aperture

Spatial resolution degrades for thicker BaF₂:Y crystal screens Better spatial resolution obtained by using smaller aperture

Summary

GHz hard X-ray imaging presents an unprecedented challenge to timing and spatial resolutions for inorganic scintillator-based front imager.

Beam test with 30 keV X-rays from APS show that 5 mm BaF_2 plates resolve well 30 keV X-ray septuplets of 27 ps width and 2.83 ns spacing.

Pixelated BaF_2 , BaF_2 : Y and LYSO crystal screens with a pitch down to 300 µm may be fabricated by mechanic slicing. Their spatial resolution and detection efficiency for hard X-rays are defined by the pitch and thickness, respectively.

Thicker monolithic crystal screens show poorer spatial resolution, which may be improved by using smaller optical aperture with a loss in both efficiency and dynamic range for hard X-rays.

Plan to pursue pixelated crystal screens with a pitch down to 25 µm by laser slicing. Additional ultrafast inorganic scintillators considered are ZnO:Ga films and all inorganic Cs Pb halide perovskite QD etc.

Acknowledgements

The authors would like to thank PCO and Princeton companies for providing the CCD cameras used in this investigation.

This work was supported in part by the US Department of Energy Grants DE-SC0011925.

Specifications: UV CCD Cameras

UV CCD camera are used to determine spatial resolution

Company	Model	Pixel size (μm)	Pixel Number	QE @ 220 nm	QE @ 420 nm	Frame rate (fps)	Exposure Time	External Trigger	Full Scale (e)	Noise (rms, e)
Hamamatsu	C8000-30	14	640×480	0.70	0.65	31.4	30.8ms-1s	CMOS	30000	150
Hamamatsu	C9100-23B	16	640×480	~0.4	0.65	70.4	1µs-1s	CMOS	140000	8
Princeton Instruments	KURO1020B	11	1200×1200	~0.50	0.75	41	5ms-10s	TTL	80000	typ. 1.3
Intevac Photonics	MicroVista UV	10.8	1280×1024	~0.35	~0.75	30	30µs-260ms	N/A	35000	<50
РСО	pco.edge 4.2 bi UV	6.5	2048×2048	~0.50	~0.70	40	10µs-20s	TTL	48000	typ. 1.9
EHD Imaging	SCM2020-UV	6.5	2048×2048	~0.31	~0.70	45	0.1ms-1000s	TTL	54000	<2
Amsterdam Scientific Instruments	TPX3Cam	55	256×256	0	>0.3	>1M	?	Yes	1000ph	?

10/1/2019

Bar pattern, Sine pattern,

Amplitude

% 10 10

10

X-ray Imaging: effect of thickness and aperture

A better spatial resolution may be obtained by a smaller aperture

SIC LYSO of 20×20×1 mm³

PCO.edge 4.2 bi camera + knife edge method

SIC LYSO of 20×20×0.1 mm³

10/1/2019