

LuAG Ceramic Scintillators for Future HEP Experiments

Chen Hu¹, Jiang Li², Fan Yang^{1,3}, Benxue Jiang⁴, Liyuan Zhang¹, and Ren-Yuan Zhu¹

1. California Institute of Technology

2. Shanghai Institute of Ceramics, CAS

3. Nankai University

4. Shanghai Institute of Optics and Fine Mechanics, CAS

June 14, 2018

Paper 0333 Presented in SORMA XVII at University of Michigan

Why LuAG Ceramics for HEP Experiments

- Challenges for future inorganic scintillators:
 - Ultrafast and rad hard scintillators at the energy frontier (HL-LHC);
 - Ultrafast scintillators at the intensity frontier (Mu2e-II);
 - Ultrafast scintillators for GHz hard X-ray imaging (Marie).
- LYSO:Ce, BaF₂:Y and LuAG:Ce survive the radiation environment expected at HL-LHC with 3000 fb⁻¹.
 - Absorbed dose: up to 100 Mrad,
 - Charged hadron fluence: up to 6×10¹⁴ p/cm²,
 - Fast neutron fluence: up to 3×10¹⁵ n/cm².
- LuAG Ceramics provide a cost-effective solution for the shashlik calorimeter concept.
 - Simple production technology;
 - High raw material usage;
 - No after growth processing.

Fast Inorganic Scintillators

	LYSO:Ce	LSO:Ce,Ca ^a	LuAG:Ce ^b	LuAG:Pr ^c	GGAG:Ce ^d	GLuGAG:Ce ^g	GYGAG:Ce ^h	SrHfO₃:Ce ⁱ	BaHfO₃:Ce ⁱ	CeBr ₃ ^k	LaBr ₃ :Ce ^k
Density (g/cm ³)	7.4	7.4	6.76	6.76	6.5	6.80	5.80	7.56	8.5	5.23	5.29
Melting points (°C)	2050	2050	2060	2060	1850 ^e	>1900 ^e	1850 ^e	2730	2620	722	783
X _o (cm)	1.14	1.14	1.45	1.45	1.63	1.38	2.11	1.17	0.98	1.96	1.88
R _M (cm)	2.07	2.07	2.15	2.15	2.20	1.57	2.43	2.03	1.87	2.97	2.85
λ _ι (cm)	20.9	20.9	20.6	20.6	21.5	20.8	22.4	20.6	19.4	31.5	30.4
Z _{eff}	64.8	64.8	60.3	60.3	51.8	55.2	45.4	60.9	62.9	45.6	45.6
dE/dX	9.55	9.55	9.22	9.22	8.96	9.28	8.32	9.80	10.7	6.65	6.90
λ _{peak} (nm)	420	420	520	310	540	550	560	410	400	371	356
Refractive Index	1.82	1.82	1.84	1.84	1.92 ^f	1.92 ^f	1.92 ^f	2.0	2.1	1.9	1.9
Normalized Light Yield	100	116	83	73	115	161	167	133	133	99	153
Total Light yield (ph/MeV)ª	30,000	34,800	25,000	22,000	34400	48,200	50,000	5,000 ^j	5,000 ⁱ	30,000	46,000
Decay time (ns) ^a	40	31	46	20	53	84 148	100	42	25	17	20
Light Yield in 1 st ns (photons/MeV)	740	950	540	1,100	640	570	500	120	200	1,700	2,200
Issues					high thermal neutron x-section			incongruent		hygroscopic	

^a Spurrier, et al., IEEE T. Nucl. Sci. 2008,55 (3): 1178-1182

^b Liu, et al., Adv. Opt. Mater., 4: 731–739. doi: 10.1002/adom.201500691

^c Yanagida, et al., *IEEE T. Nucl. Sci.* 2012, 59(5): 2146

^d Luo, et al., *Ceram. Int.* 2016, 41(1): 873

^e The melting point of these materials various with different composition from 1800 to 1980 °C. The data is based on reported values. ^f Kuwano, et al., J. Cryst. Growth. 1988, 92: 17

^g Wu, et al., *NIMA* 2015, 780: 45

^h Cherepy, et al., *IEEE T. Nucl. Sci.* 2013, 60(3): 2330

ⁱ van Loef, et al., *IEEE T. Nucl. Sci.* 2007, 54(3):741

 j Based on 137 Cs gamma-ray excitation (shaping time of 4 μs) light yield result in ref. i k Data based on single crystals

LuAG:Ce Ceramic Plates

LuAG ceramic scintillators S1 and S2 prepared by SIC show consistent emission peak at 500 nm with a PL decay time of ~50 ns and no self absorption

Scintillation Performance for LuAG:Ce Ceramics

Light output is about 1,400 p.e./MeV. In addition to the ~50 ns decay time, a slow component was observed with a F/T ratio, defined as LO(200)/LO(3000), of 60%

Excellent Radiation Hardness: y-ray & Protons

No damage was observed in both transmittance and light output after 220 Mrad gamma radiation and 2.9×10^{14} p/cm² of 800 MeV

Very promising for a LuAG ceramics-based calorimeter for future HEP experiments

THIS THE HNOL

Excellent Radiation Hardness: y-ray & proton IR

No damage was observed in EWLT, LO and XEL spectrum

6/14/2018

LO & F/T Ratio vs Ce Concentration

The F/T ratio decreases from 70% to 62% as the Ce concentration increases; 1. LO of 200 ns gate increases as the Ce concentration increases. 2.

Paper 0333 Presented by Chen Hu of Caltech in SORMA XVII at University of Michigan

0.3

0.4

Effect of Co-doping: Li⁺

Li⁺ co-doping degrades the F/T ratio to less than 60%.
The LO of 200 ns gate is reduced to ~1,100 p.e./MeV.

Effect of Co-doping: Mg²⁺

1. Mg^{2+} co-doping improves the F/T ratio to 74%.

2. The LO of 200 ns gate is increased to 1,500 p.e./MeV.

Effect of Co-doping: Ca²⁺

Ca²⁺ co-doping improves the F/T ratio to 90%.
The LO of 200 ns gate is reduced to ~1,200 p.e./MeV.

Summary: Li, Mg and Ca Co-doping

1. Li⁺ co-doping decreases the F/T ratio and the LO of 200 ns gate; 2. Mg²⁺ co-doping improves the F/T ratio, and shows the highest LO of 200 ns gate; 3. Ca²⁺ co-doping shows the highest F/T ratio ~90%.

Summary

- LuAG:Ce ceramics shows an emission peaked at 500 nm with no selfabsorption. Its emission has a 50 ns decay time and a slow scintillation component with a decay time of ~1 µs. Its light output of 200 ns gate is about 1,400 p.e./MeV.
- LuAG:Ce ceramics are found to have excellent radiation hardness against an ionization dose up to 220 Mrad and a proton fluence up to 3×10^{14} p/cm². This material is very promising for future HEP calorimeters to be operated in a severe radiation environment, such as the HL-LHC.
- Correlations are observed between the Ce concentration, the F/T ratio and the light output of 200 ns gate.
- Mono- and divalent co-dopants are investigated to reduce the slow component in LuAG:Ce. While the Mg²⁺ co-doping shows the highest LO of 200 ns gate, the F/T ratio reaches 90% for Ca²⁺ co-doped LuAG:Ce ceramics.
- R&D will continue to develop Ca co-doped LuAG:Ce ceramics and LuAG:Pr ceramics.

6/14/2018

Origin of the Slow Component in LuAG:Ce

Nikl, M., et al. (2013). *Prog. Cryst. Growth Charact. Mater.* **59**(2): 47-72.

Delayed combination process around the antisite defect (AD) & Ce³⁺ complex defects accomplished through the above and below CB pathway

The intrinsic AD-related defects are hard to be eliminated. Possible means for the slow component suppression are:

- Reduce the AD&Ce³⁺ complex defect by reducing Ce³⁺ concentration.
- Mono- and divalent ions (Me⁺, Me²⁺) co-doping to convert Ce³⁺ to Ce⁴⁺ to avoid the combination process.