Progress of Large Size BaF₂:Y Crystals for Future HEP Experiments

1. Introduction and Samples

Because of its ultrafast light with sub-ns decay time and suppressed slow scintillation yttrium doped barium fluoride (BaF₂:Y) crystals attract a broad interest in the HEP community pursuing ultrafast calorimetry, such as Mu2e-II. R&D continues to optimize yttrium doping uniformity and radiation hardness for BaF₂:Y crystals of large size. Fig. 1 shows long BaF₂:Y crystals with suppressed slow component grown by BGRI and SIC. Figs. 2 and 3 show respectively their longitudinal transmittance and light output as a function of integration time, measured at Caltech HEP crystal lab. 2020 samples show no impurity or defects induced absorption band, a consistent fast scintillation component (A0) of about 100 p.e./MeV and the fast/slow ratio (A0/A1 or F/S) of 0.64 and 1.1 respectively for the samples from BGRI and SIC.

Fig. 1 Six long BaF2:Y crystals produced by BGRI Fig. 2 Longitudinal transmittance for (left) and SIC (right) from 2017 to 2020 for the Mu2e-II the 6 samples (solid lines) and the xexperiments.

ray excited emission (blue dots).

2. Radiation Induced Readout Noise and Damage

Fig. 4 shows a setup used to measure Gamma-ray induced photocurrent and readout noise (RIN) measured by an R2059 PMT via an air gap coupled to BaF₂:Y samples wrapped by Tyvek under 2 and 23 rad/h by ⁶⁰Co y-rays. F is the radiation induced photoelectron number per second, normalized to the dose rate or neutron flux. RIN (σ) is the fluctuation of photoelectron number (Q) normalized to the light output (LO) in the readout gate for the BaF₂ sample. Figs. 5, 6 and 7 show the photocurrent history of two SIC BaF₂ samples, one BGRI BaF₂ sample and two BaF₂:Y samples from BGRI (top) and SIC (bottom) respectively under 23 rad/h. Significant reduced photocurrent was observed in BaF₂:Y samples.

photocurrent before, during and after irradiation for Hamamatsu R2059 PMT for two SIC Hamamatsu R2059 PMT for one BGRI BaF₂ and BaF₂:Y samples.

BaF₂ samples under 23 rad/h.

BaF₂ samples under 23 rad/h.

Chen Hu^a, Liyuan Zhang^a, Ren-Yuan Zhu^a, Junfeng Chen^b, and Mingrong Zhang^c ^a High Energy Physics Laboratory, California Institute of Technology, Pasadena, CA 91125, USA ^b Shanghai Institute of Ceramics, 1295 Dingxi Rd, Shanghai, 200050, China ^c Beijing Glass Research Institute, 5 Xingguang Ave, Beijing, 101111, China

Fig. 3 light output is shown as a function of integration time for 2020 BGRI (top) and SIC (bottom) samples.

Hamamatsu R2059 PMT for BGRI function of the dose rate for 2 BaF₂:Y SIC (bottom) and samples under 23 rad/h.

rad/h

Fig. 8 shows the average PMT photocurrent during irradiation as a function of the dose rate for two BaF₂:Y and three BaF₂ samples under 2 and 23 rad/h. An excellent linearity was observed between the y-ray induced photocurrent and the dose rate. It is clear that yttrium doping in BaF₂ reduces the y-ray induced photocurrent significantly. Fig. 9 shows that γ -ray induced photocurrent (top) and readout noise (bottom) are highly correlated to the light output in 2,500 ns gate, or the slow component, but not the fast component. Table I summarizes the F factor and the RIN (σ) values. Figs. 10 and 11 show longitudinal transmittance (LT) before, after 10, 100 and 1,000 krad, and 20 days' recovery for 2017 BaF₂:Y samples from BGRI and SIC respectively at room temperature, confirming no recovery in transmittance damage. Fig. 12 shows normalized light output (top) and EWLT as a function of the integrated dose. We note that crystal quality is diverse at this stage of R&D, so needs to be improved.

Table I: A Summary of photocurrent, F_v factor and gamma-ray induced readout noise for 2 BaF₂:Y and 3 BaF₂ samples

Crystal ID	L.O. corrected to air gap (p.e./MeV)*		F/S	Dose rate (rad/h)	Dark cur. before irrad. (nA)	Photo cur. (µA)	Dark cur. 20s after irrad. (nA)	Dark cur after 20s/Photo cur. (×10 ⁻⁴)	Dark cur. after 1000s –before irrad.	F (p.e./s/(rad/h))	σ (keV)
	ns	ns							(IIA)		
BGRI	52	107	0.64	2	0.5	24	34	14	0.05	3.1×10 ⁹	1050
BaF ₂ :Y-2020	33	127		23	0.5	269	122	4.5	0.22		
SIC	15	97	1.09	2	0.4	10	30	29	0.03	- 1.3×109	810
BaF ₂ :Y-2020	43	07	1.00	23	0.4	115	245	21	1.0		
BGRI	16	270	0.10	2	0.8	41	5.7	1.4	1.6	5.8×10 ⁹	1650
$BaF_{2}-1507$	40	520	0.10	23	1.8	504	43	0.9	7.5		
SIC	18	276	0.10	2	6.0	45	10	2.1	0.92	- 5.8×10 ⁹	1590
BaF_2-2	40	520	0.10	23	3.0	520	24	0.5	5.9		
SIĊ	16	278	0.09	2	2.0	43	10	2.3	1.1	5.9×10 ⁹	1670
BaF ₂ -8	40	40 328		23	11	555	63	1.1	5.3		

krad, and after 20 days' recovery.

2500 ns L.O. (p.e./MeV)

Fig. 7 Photocurrent measured by the Fig. 8 Photocurrent is shown as a Fig. 9 Gamma induced photocurrent (top) and readout noise (bottom) are BaF₂:Y and 3 BaF₂ samples under 2 and 23 shown as a function of the light output in 2,500 ns gate.

3. VUV Photodetectors for BaF₂ Readout

RIN: x is found highly correlated to the light output in 2.5 µs gate, but not 50 ns gate, indicating the dominance of the slow scintillation component. In addition to the selective doping in BaF₂, R&D has also been carried out for solar-blind VUV photodetectors sensitive to the fast but not the slow component. QE or PDE were measured for four Hamamatsu R2059 PMT, a Photek solar-blind photocathode, a Hamamatsu VUV MPPC and a few FBK VUV SiPMs with integrated filter. Table I summarizes emission weighted QE/PDE for the fast component and the corresponding F and RIN:y values for 4 VUV photodetectors for four BaF₂ and BaF₂:Y samples. The results show that both yttrium doping and solar blind photodetector are needed to reduce the RIN: y to less than 0.6 MeV.

Photodetector	EWQE/PDE _{fast} (%)	EWQE/PDE (%)	LO(50 ns) p.e./MeV	F	RIN:y (keV)								
BGRI BaF ₂ :Y-2020													
Hamamatsu R2059 PMT	15.2	18.7	53	3.1×10 ⁹	1050								
Photek PMT Solar Blind	25.6	16.1	89	2.7×10^{9}	580								
FBK SiPM w/UV Filter-I	17.8	14.7	62	2.4×10 ⁹	800								
Hamamatsu VUV MPPC	10.5	10.2	37	1.7×10^{9}	1120								
SIC BaF ₂ :Y-2020													
Hamamatsu R2059 PMT	15.2	18.7	45	1.3×10 ⁹	810								
Photek PMT Solar Blind	25.6	16.1	76	1.1×10 ⁹	450								
FBK SiPM w/UV Filter-I	17.8	14.7	53	1.0×10 ⁹	610								
Hamamatsu VUV MPPC	10.5	10.2	31	7.1×10 ⁸	870								
	BGRI BaF	2-1507											
Hamamatsu R2059 PMT	15.2	20.0	46	5.8×109	1650								
Photek PMT Solar Blind	25.6	13.0	77	3.8×10 ⁹	790								
FBK SiPM w/UV Filter-I	17.8	13.5	54	3.9×10 ⁹	1160								
Hamamatsu VUV MPPC	10.5	9.9	32	2.9×10 ⁹	1680								
	SIC Bal	F2-2											
Hamamatsu R2059 PMT	15.2	20.0	48	5.8×109	1590								
Photek PMT Solar Blind	25.6	13.0	81	3.8×10 ⁹	760								
FBK SiPM w/UV Filter-I	17.8	13.5	56	3.9×10 ⁹	1120								
Hamamatsu VUV MPPC	10.5	9.9	33	2.9×10 ⁹	1620								
			1 1		1								

- intensity, promising an ultrafast calorimeter.
- R2059 PMT in 50 ns gate.
- and neutrons.

Work supported in part by the U.S. Department of Energy under Grant DE-SC0011925

Table II: A Summary of 4 VUV photodetectors for BaF₂ and BaF₂:Y readout.

4. Summary

>BaF₂ crystals provide ultrafast light with 0.5 ns decay time. Yttrium doping increases the F/S ratio while maintaining the ultrafast light

>RIN:y was measured for two BaF₂:Y and three BaF₂ samples under 2 and 23 rad/h. 0.8 MeV RIN: γ is observed for BaF₂: Y samples as compared to 1.6 MeV for BaF₂ samples of $30 \times 30 \times 250$ mm³ readout by

>RIN:y is found to be highly correlated to the light output in 2.5 µs gate or the slow component. Both Yttrium doping and solar blind photodetector are required to further reduce the RIN: y to < 0.6 MeV.

 $\succ_{\mathbf{Y}}$ -ray induced damage in BaF₂:Y crystals is sample dependent. R&D is needed for improvement. Measurements are on the way for both y-rays

Acknowledgments:

Contact : zhu@caltech.edu