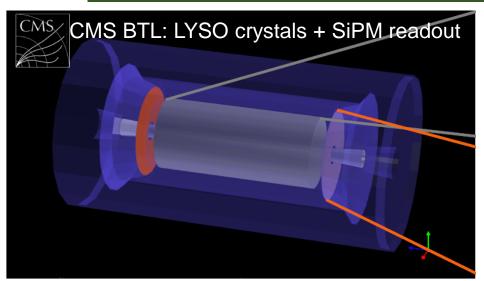


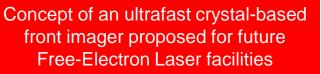
Temporal Response of Ultrafast Inorganic Scintillators for future HEP Applications

Chen Hu, Liyuan Zhang and Ren-Yuan Zhu

California Institute of Technology

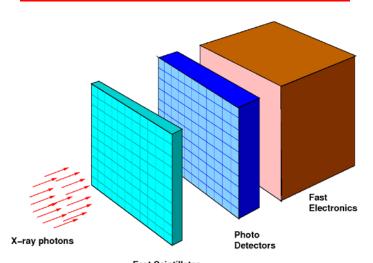

November 9, 2022

Application of Ultrafast Crystals



Figures of merit for TOF: light yield in the 1st ns and the ratio between fast and total

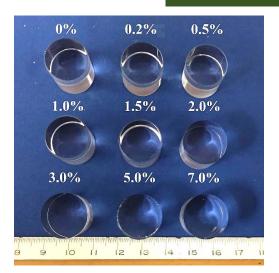
Mu2e-I: 1,348 CsI of 34x34x200 mm³ Mu2e-II: 1,940 BaF₂:Y

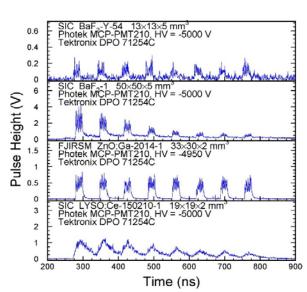

Mu2e-II: arXiv:1802.02599

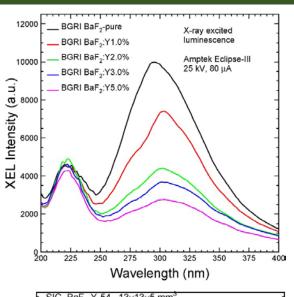
GHz Hard X-ray Imaging for FEL

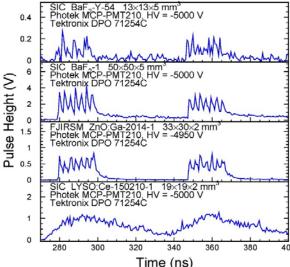
2 ns and 300 ps inter-frame time requires ultrafast sensor

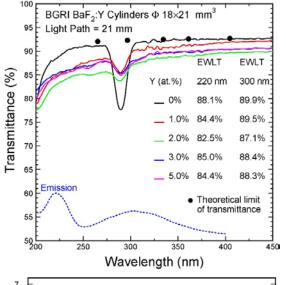
	<u> </u>	1				
Performance	Type I imager	Type II imager				
X-ray energy	up to 30 keV	42-126 keV				
Frame-rate/inter-frame time	0.5 GHz / 2 ns	3 GHz / 300 ps				
Number of frames per burst	≥ 10	10 - 30				
X-ray detection efficiency	above 50%	above 80%				
Pixel size/pitch	≤ 300 μm	< 300 μm				
Dynamic range	10 ³ X-ray	≥ 10 ⁴ X-ray				
	Photons/pixel/frame	Photons/pixel/frame				
Pixel format	64 × 64 ^a (scalable to 1 Mpix)	1 Mpix				

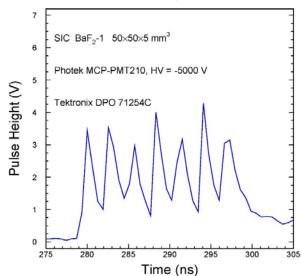

Fast Scintillator Screen

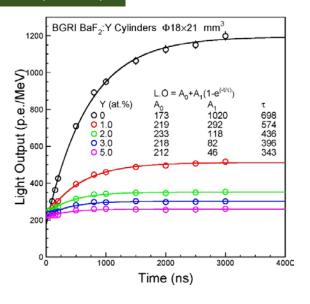



BaF₂:Y for Ultrafast Calorimetry

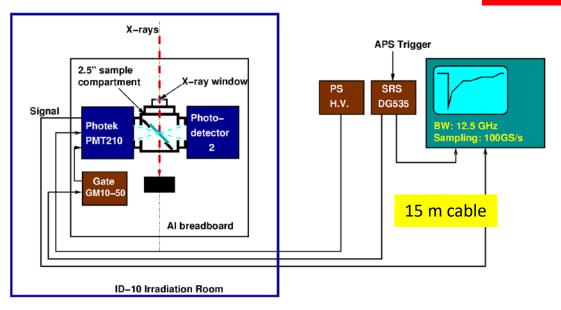


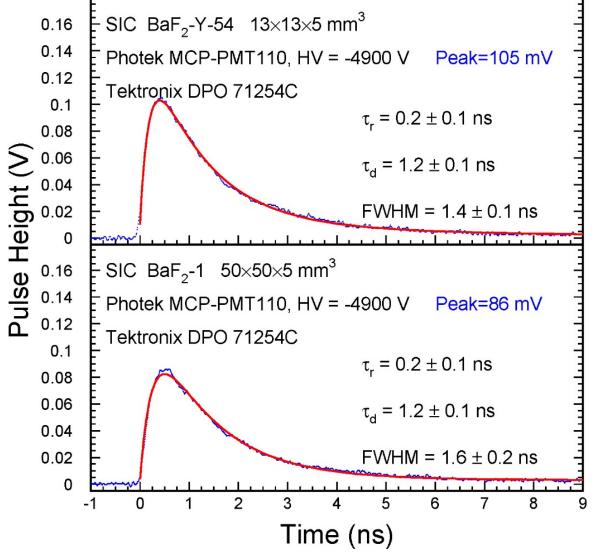

Increased F/S ratio observed in BGRI BaF₂:Y crystals: Proc. SPIE 10392 (2017)



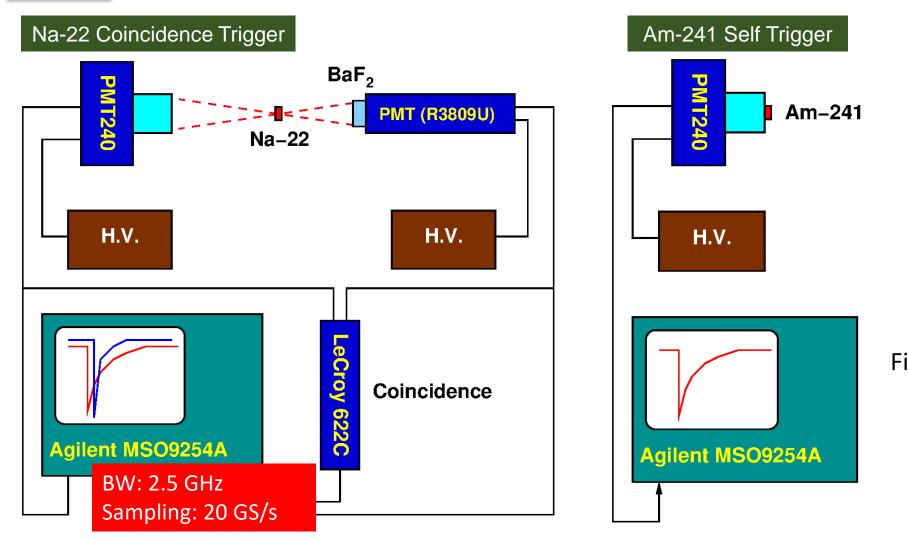


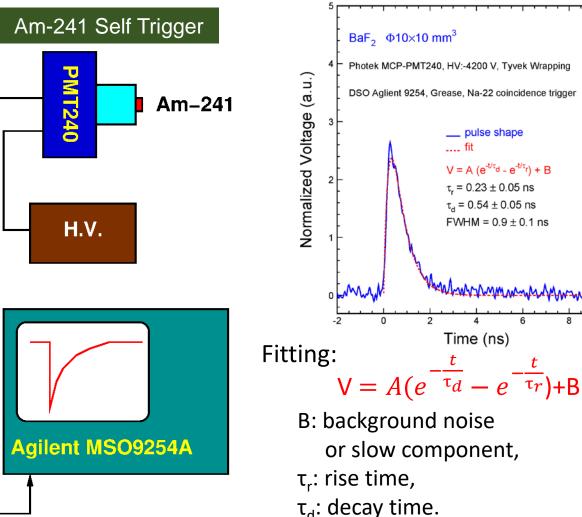
X-ray bunches with 2.83 ns spacing in septuplet are clearly resolved by ultrafast BaF₂:Y and BaF₂ crystals: for GHz Hard X-ray Imaging NIMA 240 (2019) 223-239


Presented by Chen Hu of Caltech in the 2022 NSS MIC RTSD Conference, Milano


A Puzzle of Long Decay Observed at APS 2022 IEE

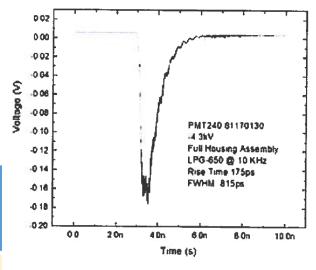
NIM A **940** (2019) 223–229

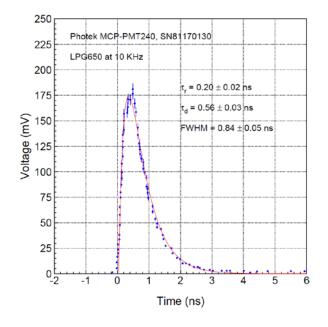

The decay time of BaF₂ measured at APS for septuplet X-ray bunches with 2.83 ns spacing is longer than 1 ns. This is suspected to be caused by the 15 m long cable used between the MCP-PMT and the MSO



An MCP-PMT 240-Based Test Bench

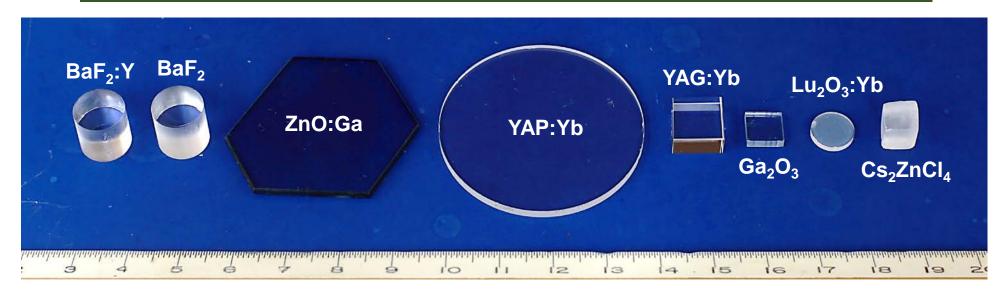
Rise, decay and FWHM obtained by fitting temporal response




Temporal Response of MCP-PMT 240

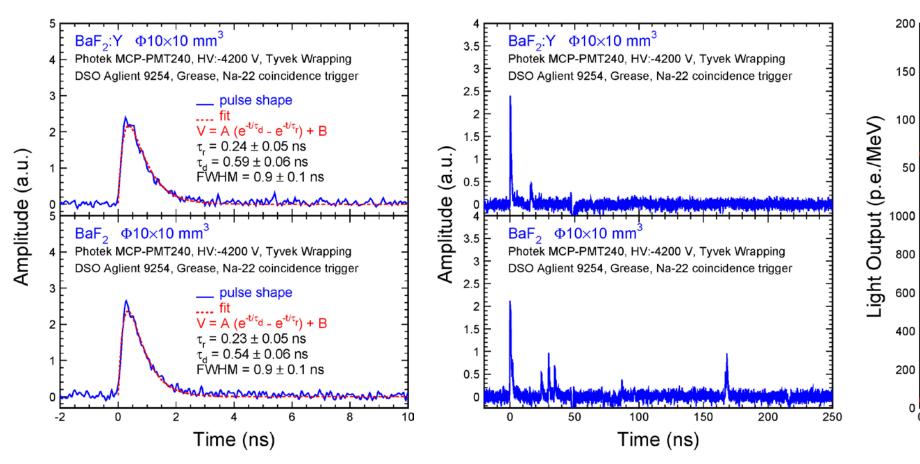
A fit to response of the Photek MCP-PMT 240 for pico-second laser pulses shows both the rise and FWHM consistent with the specification

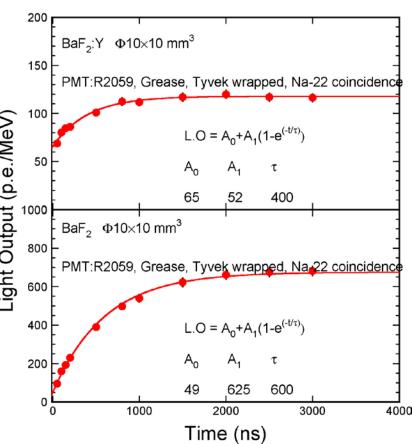
Photodetector	Active diameter (mm)	Spectral range (nm)	Peak Sen. (nm)	Gain	Rise time (ns)	FWHM (ns)	
Photek MCP-PMT 240	40	160-850	280-450	1×10 ⁶	0.180	0.82	
Hamamatsu MCP- PMT R3809U-50	11	160-850	430	3×10 ⁵	0.160	0.30	
Photek MCP-PMT 110	10	160-850	280-450	1×10 ⁴	0.065	0.11	
Photek MCP-PMT 210	10	160-850	280-450	1×10 ⁶	0.085	0.15	
Hamamatsu PMT R2059	46	160-650	450	2×10 ⁷	1.3		



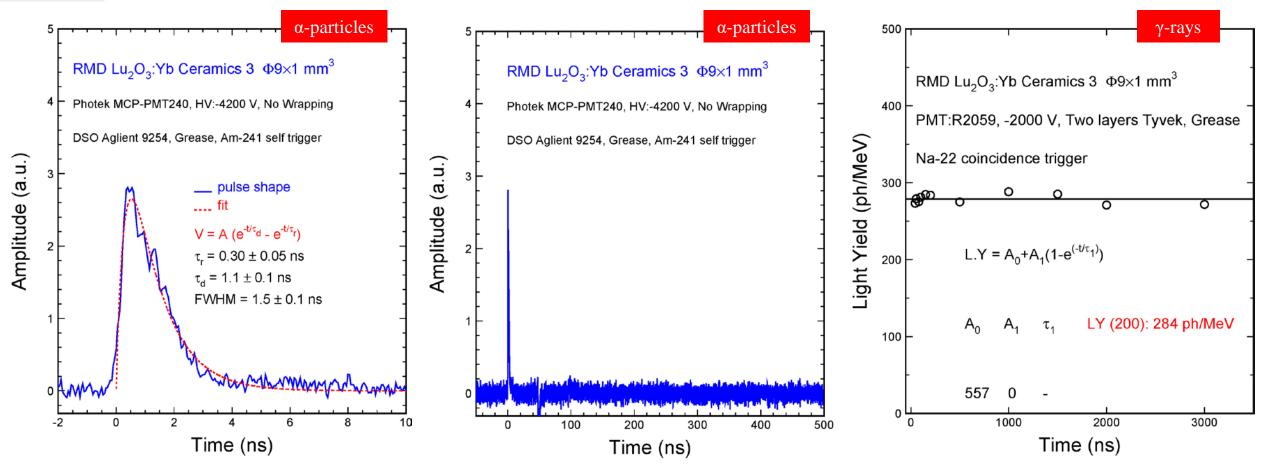
Ultrafast Inorganic Scintillator Samples

8 fast/ultrafast crystals samples used in this investigation



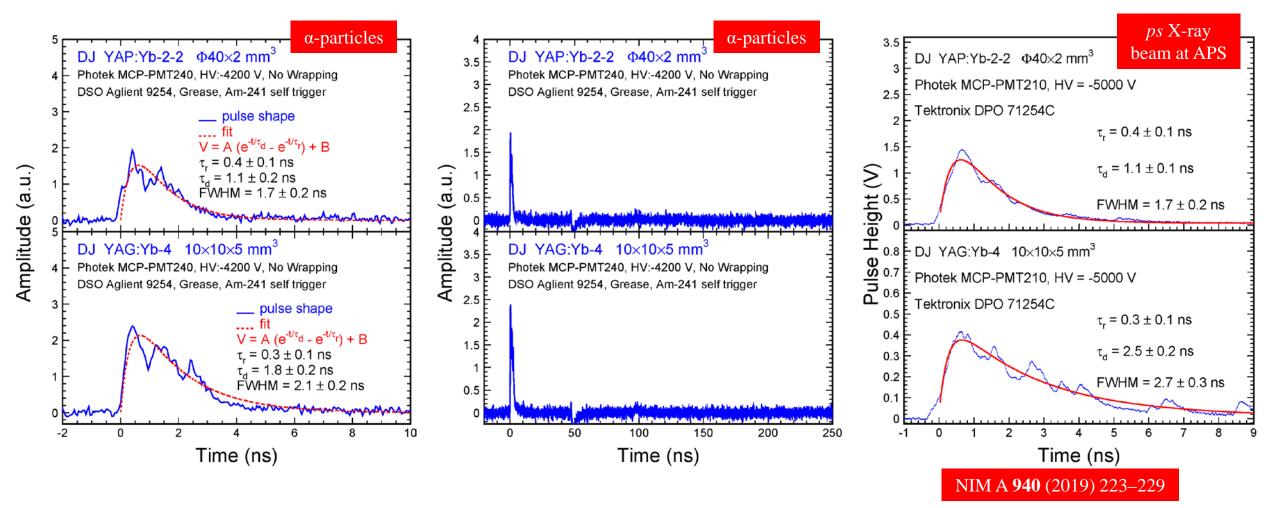

	BaF ₂ :Y	BaF ₂	ZnO:Ga	YAP:Yb	YAG:Yb	Ga ₂ O ₃	Lu ₂ O ₃ :Yb	Cs ₂ ZnCl ₄
Producer	BGRI	BGRI	FJIRSM	Dongjun	Dongjun	Tongji	RMD	RMD
Dimension (mm³)	Ф10×10	Ф10×10	33×30×2	Ф40×2	10×10×5	7×7×2	Ф9×1	6×6×7

Temporal Response of BaF₂ & BaF₂:Y



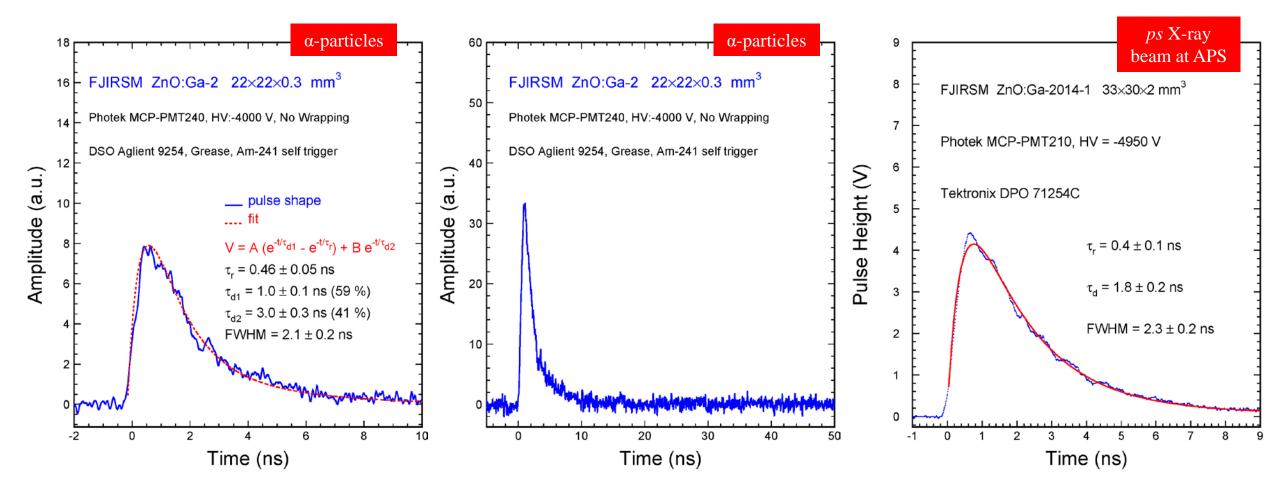
Ultrafast response of 0.2/0.6/0.8 ns observed for BaF₂ and BaF₂:Y crystals The response is consistent with the Photek MCP-PMT 240 specification

Temporal Response of Lu₂O₃:Yb Ceramics



Lu₂O₃:Yb ceramic of 9.4 g/cc shows an ultrafast decay time of **1.1 ns** by Am-241 with negligible slow component observed in integrated light output measurement

Temporal response of YAP:Yb & YAG:Yb



YAP:Yb & YAG:Yb show a decay time of 1.1 ns and 1.8 ns by Am-241 with negligible slow component

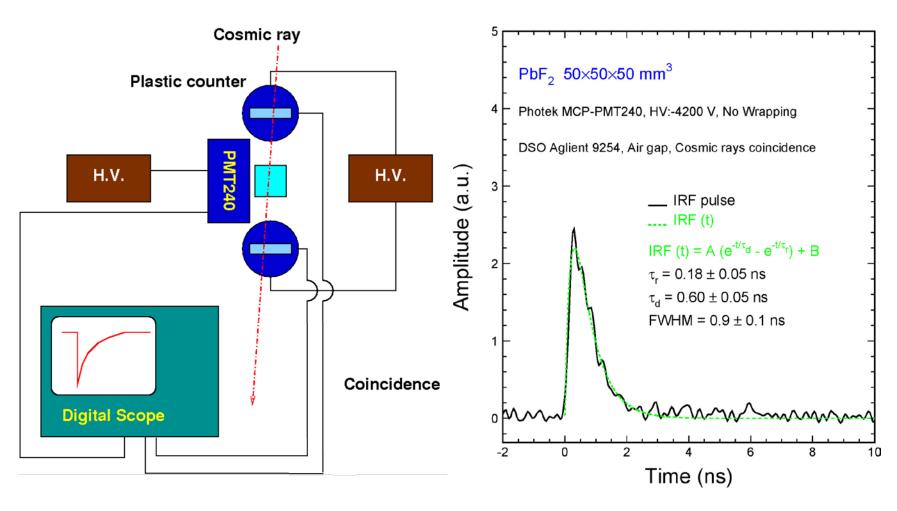
Temporal Response of ZnO:Ga

ZnO:Ga shows decay time of 1.0/3.0 ns by Am-241 with negligible slow component

Fast and Ultrafast Inorganic Scintillators

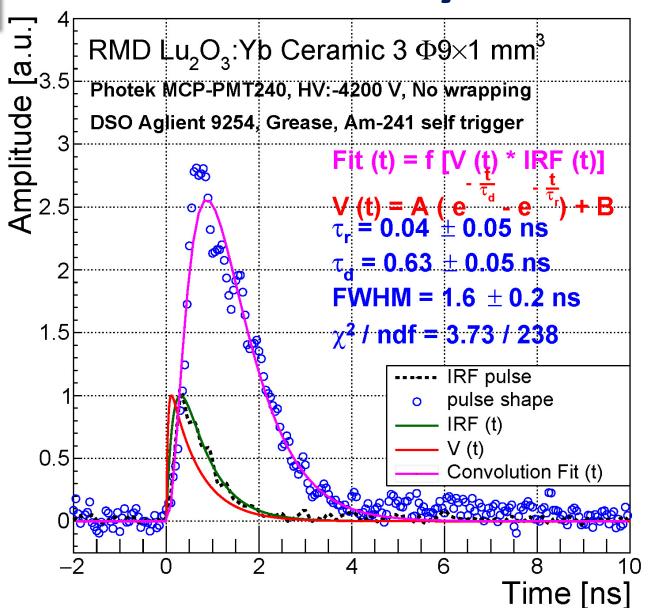
arXiv: 2203.06788

	BaF ₂	BaF ₂ :Y	Lu ₂ O ₃ :Yb	YAP:Yb	YAG:Yb	ZnO:Ga	β-Ga ₂ O ₃	LYSO:Ce	LuAG:Ce	YAP:Ce	GAGG:Ce	LuYAP:Ce	YSO:Ce
Density (g/cm ³)	4.89	4.89	9.42	5.35	4.56	5.67	5.94	7.4	6.76	5.35	6.5	7.2 ^f	4.44
Melting points (°C)	1280	1280	2490	1870	1940	1975	1725	2050	2060	1870	1850	1930	2070
X ₀ (cm)	2.03	2.03	0.81	2.59	3.53	2.51	2.51	1.14	1.45	2.59	1.63	1.37	3.10
R _M (cm)	3.1	3.1	1.72	2.45	2.76	2.28	2.20	2.07	2.15	2.45	2.20	2.01	2.93
λ _ι (cm)	30.7	30.7	18.1	23.1	25.2	22.2	20.9	20.9	20.6	23.1	21.5	19.5	27.8
Z _{eff}	51.0	51.0	67.3	32.8	29.3	27.7	27.8	63.7	58.7	32.8	50.6	57.1	32.8
dE/dX (MeV/cm)	6.52	6.52	11.6	7.91	7.01	8.34	8.82	9.55	9.22	7.91	8.96	9.82	6.57
λ _{peak} ^a (nm)	300 220	300 220	370	350	350	380	380	420	520	370	540	385	420
Refractive Index ^b	1.50	1.50	2.0	1.96	1.87	2.1	1.97	1.82	1.84	1.96	1.92	1.94	1.78
Normalized Light Yield ^{a,c}	42 4.8	1.7 4.8	0.95	0.19 ^d	0.36 ^d	2.6 ^d 4.0 ^d	6.5 0.5	100	35° 48°	9 32	190	16 15	80
Total Light yield (ph/MeV)	13,00 0	2,000	280	57 ^d	110 ^d	2,000 ^d	2,100	30,000	25,000 ^e	12,000	58,000	10,000	24,000
Decay time ^a (ns)	600 0.5	600 0.5	1.1 ^d	1.1 ^d	1.8 ^d	3.0 ^d 1.0 ^d	110 5.3	40	820 50	191 25	570 130	1485 36	75
LY in 1 st ns (photons/MeV)	1200	1200	170	34 ^d	46 ^d	980 ^d	43	740	240	391	400	125	318
LY in 1 st ns /Total LY (%)	9.0	64	60	60	43	49	2.0	2.5	1.2	3.3	0.7	1.4	1.3
40 keV Att. Leng. (1/e, mm)	0.106	0.106	0.127	0.314	0.439	0.407	0.394	0.185	0.251	0.314	0.319	0.214	0.334


^a top/bottom row: slow/fast component; ^b at the emission peak; ^c normalized to LYSO:Ce; ^d excited by Alpha particles; ^e 0.3 Mg at% co-doping; ^f Lu_{0.7}Y_{0.3}AlO₃:Ce.

The Instrument Response Function

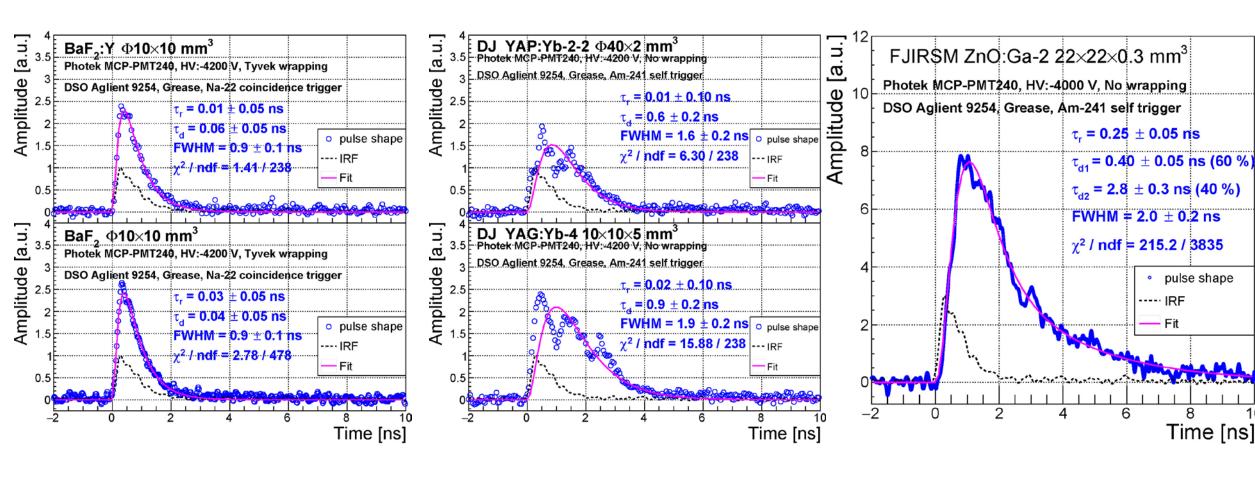
$$Fit(t) = f[V(t) * IRF(t)] = \int_{-\infty}^{+\infty} V(\tau) * IRF(t - \tau) d\tau$$



Intrinsic ultrafast response time can be extracted by taking out the IRF of the set-up. It was measured by fitting Cerenkov light pulse from a PbF₂ crystal, which agrees well with Photek spec.

Intrinsic Decay Time of Lu₂O₃:Yb

The magenta line shows the convolution fit. The numerical values of the fit after taking out the IRF are shown in blue


The result of the 0.63 ns decay time is the intrinsic decay time of Lu₂O₃:Yb

Decay time of BaF₂, YAP:Yb, YAG:Yb &ZnO:Ga 2022 IEEE NS

The intrinsic decay time of YAP:Yb, YAG:Yb and ZnO:Ga are 0.6, 0.9 & 0.4/2.8 ns, respectively. The rise/decay time for the BaF₂/BaF₂:Y ultrafast light is within the IRF of the set-up

Summary

- Ultrafast crystals with sub-nanosecond decay time are important to break the ps timing barrier for future HEP TOF system, ultrafast calorimetry and GHz hard X-ray imaging.
- Temporal response was measured by using a Photek MCP-PMT 240-based test bench. The measured decay time of \sim 0.5 ns for BaF₂ and BaF₂:Y is much shorter than the 1.2 ns measured at APS, which is due to the 15 m long cable used between the MCP-PMT & the MSO at APS.
- Lu_2O_3 :Yb ceramics show a decay time of 1.1 ns with negligible slow component. With its 9.4 g/cc density, it is a very interesting ultrafast inorganic scintillator.
- YAP:Yb and YAG:Yb samples show decay time of 1.1 and 1.8 ns. Both samples also have negligible slow component.
- ZnO:Ga show decay time of 1.0/3.0 ns.
- Taking out the instrument response function, the intrinsic decay time of BaF_2 , Lu_2O_3 :Yb, YAP:Yb, YAG:Yb and ZnO:Ga are <0.5, 0.6, 0.6, 0.9 and 0.4/3 ns, respectively.
- Investigation will continue at APS of ANL by using high intensity ps x-ray pulses.

Acknowledgements: DOE HEP Award DE-SC0011925