

QE/PDE of UV Photodetectors for Barium Fluoride Readout

<u>Liyuan Zhang</u>, Chen Hu, James Oyang, Bertrand Echenard, David Hitlin, Xuebin Qiao, Jason Trevor, and Ren-Yuan Zhu

California Institute of Technology

Paper N-05-03 presented in the 2020 IEEE NSS/MIC Virtual Conference, Nov 3, 2020

Introduction

Because of its ultrafast scintillation peaked at 220 nm with less than 0.6 ns decay time, barium fluoride (BaF_2) crystals have attracted a broad interest in the communities pursuing ultrafast calorimetry for future high energy physics and nuclear physics experiments and GHz hard x-ray imaging for future x-ray free electron laser facilities.

One crucial issue of BaF_2 is its slow scintillation peaked at 300 nm with a 600 ns decay time and an intensity of much higher than the fast component, which causes pileup noise in a high rate environment.

R&D has been carried out along two approaches to suppress the slow component: 1) selective doping in BaF_2 , and 2) development of solar-blind UV photodetectors sensitive to the fast component but not the slow component.

We report results of quantum efficiency (QE) and photon detection efficiency (PDE) measurements for several photodetectors down to 200 nm and their corresponding figures of merit for detecting the BaF_2 ultrafast component.

11/3/2020

Emission Spectra of BaF₂ and BaF₂:Y

Yttrium doping was found recently to suppress the slow component while maintaining the ultrafast component. Selective readout of BaF₂ ultrafast scintillation light with UV detectors was investigated.

UV Photodetectors Investigated

Company	Photodetector	Model Qty		Product	
Hamamatsu	PMT	R2059	4	Commercial	
Hamamatsu	VUV3 MPPC	S13371-6621	4	Commercial	
Photek	MCP-PMT	Solar-blind photocathode	1	R&D	
FBK	SiPM	612 A1 with UV Filter-I	3	R&D	
FBK	SiPM	615-A1 with UV Filter-II	3	R&D	

QE(λ) and PDE(λ) Scan (200-1100 nm)

18 IS

Bialkali and Solar-blind Cathodes

QE response to the ultrafast and slow component (LO) and the F/S ratio for BaF_2 and BaF_2 :Y emissions were determined for four Hamamatsu R2059 PMTs and a Photek solar-blind photocathode

2020 IEEE NSS/MIC Virtual Conference, Paper N05-03, Presented by Liyuan Zhang, Caltech

PDE Calibration Setup

Input photon #s were measured by a calibrated PD (Newport 71650). Response to 10 ns pulses from a 465 nm LED was digitized by a LeCroy 3001 qvt with photoelectron #s determined by fitting the photopeak, taking into account the excess noise factor (ENF).

$$N_{ph} = \frac{I_{LED}/S}{h\nu_{LED} \times f_{LED}}$$

 I_{LED} : led photocurrent measured by PD, S: PD sensitivity hv_{LED} and f_{LED} : LED photon energy and pulse rate

$$N_{pe} = \frac{P_{LED}^2}{\sigma^2} = \frac{P_{LED}^2}{\sigma_{LED}^2 - \sigma_P^2}$$

 P_{LED} and σ_{LED} : LED photo-peak and width P_{P} and σ_{p} : Pedestal peak and width

SiPM Excess Noise Factor Measurement

حا LED Generator VT120 PreAmp ூ -10dB σ^2 (Electronics) σ^2 (Poisson)+ σ^2 (SiPM) σ^2 (LED)

NU IB91

Hamamatsu VUV3 MPPC

Over-voltage dependent PDE measured for a Hamamatsu 13371-6621 MPPC (VUV3), and its response to BaF_2 and BaF_2 : Y emissions with $V_{op} = 55.0$ V

FBK SiPM 612-A1 with UV Filter-I

Over-voltage dependent PDE measured for a FBK SiPM 612-A1, and its response to BaF_2 and BaF_2 : Y emissions with $V_{op} = 30.5$ V

FBK SiPM 615-A1 with UV Filter-II

Over-voltage dependent PDE measured for a FBK SiPM 615-A1, and its response to BaF_2 and BaF_2 :Y emissions with $V_{op} = 37.0$ V

Photodetector Response to BaF₂ and BaF₂:Y

Photodetectors	EWQE _{fast} (%)	EWQE _{slow} (%)	*BaF ₂ LO _{fast}	*BaF ₂ LO _{slow}	BaF ₂ F/S	*BaF ₂ :Y LO _{fast}	*BaF ₂ :Y LO _{slow}	BaF ₂ :Y F/S
Hamamatsu R2059	15.2	20.9	0.15	1.07	1/7.0	0.15	0.32	1/2.1
Hamamatsu VUV MPPC, S13371	10.5	9.8	0.10	0.50	1/4.8	0.10	0.15	1/1.5
Photek PMT solar blind	25.6	10.6	0.26	0.54	1/2.1	0.25	0.15	1/0.6
FBK SiPM w/UV filter -I	19.9	12.8	0.20	0.65	1/3.3	0.20	0.20	1/1
FBK SiPM w/UV filter-II	22.8	31.9	0.23	1.63	1/7.1	0.23	0.49	1/2.2

* LO is normalized to ultrafast photons from BaF₂.

11/3/2020

Summary

While yttrium doping in BaF_2 crystals increases its F/S ratio significantly a solar-blind photodetector is necessary to minimize the pileup for a BaF_2 crystal based ultrafast calorimeter for future experiments, such as Mu2e-II.

Progress has been made in solar-blind photo-cathode and SiPMs with integrated UV band-pass filters. R&D is on-going to further optimize the LO_{fast} and the F/S ratio for BaF₂ crystal readout.

We plan to extend the QE/PDE test bench to 175 nm with N_2 purging.

This work was supported in part by the US Department of Energy Grants DE-SC0011925