

Hadron Induced Radiation Damage in Fast Crystal Scintillators

Fan Yang, <u>Liyuan Zhang</u>, Ren-Yuan Zhu California Institute of Technology

Jon Kapustinsky, Ron Nelson and Zhehui Wang Los Alamos National Laboratory

Paper N3C2-2 presented in NSS-MIC-2015 at San Diego on Nov. 4, 2015

Introduction

- Because of the severe radiation environment expected in future HEP experiments at the energy frontier, e.g. the proposed HL-LHC, radiation damage caused by charged hadrons and neutrons in addition to ionization dose is a crucial issue for crystal scintillators.
- The 800 MeV proton beam at the Weapons Neutron Research facility of Los Alamos National Lab Neutron Research Center (WNR of LANSCE) is ideal for the investigation on charged hadron induced radiation damage in crystal scintillators. LYSO/CeF₃ crystals of 2.5 x 2.5 x 20/2.2 x 15 x 2.6 cm³ were irradiated to 3.3/1.4 x 10¹⁴ p/cm² at Los Alamos in December, 2014.
- To avoid multiple Coulomb scattering and hadronic shower leakage in long crystals, LYSO plates of 14 x 14 x 1.5 mm³ were irradiated by 24 GeV/67 MeV protons at CERN/UC Davis up to 6.9 x 10¹⁵/9.5 x 10¹³ p/cm².
- LYSO plates of 14 x 14 x 1.5 mm³ were also irradiated by 2.5 MeV fast neutrons from Cf-252 sources to 4 x 10¹³ n/cm² at Caltech.

Hadron Fluence @ 3,000 fb⁻¹

FLUKA simulations: the neutron and charged hadron fluence expected by the CMS FCAL at $|\eta| = 3$ is 5 x 10¹⁵/cm² and 3 x 10¹⁴/cm² respectively at the HL-LHC

No experimental data show that neutrons and charged hadrons would damage crystal scintillators equally, so they are treated separately

Energy Spectra Expected at HL-LHC

FLUKA simulations: neutrons and charged hadrons are peaked at MeV and several hundreds MeV respectively. Neutron energy of 2.5 MeV from Cf-252 source and proton energy of 800 MeV at LANL are ideal for such investigation

NSS15, N3C2-2, by Liyuan Zhang, Caltech.

800 MeV Proton Beam at LANL

Environment/Source	Proton Flux (p s ⁻¹ cm ⁻²)	Fluence on Crystal (p cm ⁻²)					
CMS FCAL (η=1.4) at HL-LHC	4.0×10^{4}	2.4 × 10 ¹² / 3000 fb ⁻¹					
CMS FCAL (η=3.0) at HL-LHC	5.0×10^{6}	3.0 × 10 ¹⁴ / 3000 fb ⁻¹					
WNR facility of LANSCE	Up to 2 × 10 ¹⁰	Up to 3 × 10 ¹⁴					

One end of a long crystal is bombarded by 800 MeV protons of a Gaussian shape with FWHM of one inch

Samples for Proton Irradiation at LANL

Sample	ID	Dimension (cm ³)			
LYSO/W Shashlik Cell	Y-11	1.4×1.4×15			
Four Sealed Capillaries and Three Y-11 Fibers	Capillaries	1.4×1.4×15			
LYSO	SG LYSO	2.5×2.5×20			
LFS	OET LFS	2.5×2.5×18			
BGO	SIC BGO	2.5×2.5×20			
CeF ₃	SIC CeF ₃	2.2 ² × 2.6 ² ×15			

Because of a power black out only 3 samples were irradiated in 4.5h

- Four 6 cm long sealed capillaries and three 20 cm long Y-11 WLS fibers: $2.7 \times 10^{14} \text{ p/cm}^2$;
- One 2.5 x 2.5 x 20 cm LYSO crystal: 3.3 x 10¹⁴ p/cm²; and
- One 2.2 x 15 x 2.6 cm CeF₃ crystal: 1.4 x 10¹⁴ p/cm². \bullet

The Experimental Setup

Up to six crystals are hosted on a linear stage. Each crystal may be irradiated by 800 MeV protons in steps with its longitudinal transmittance measured *in situ*

LYSO: LT Damage and RIAC

An LYSO of $2.5 \times 2.5 \times 20$ cm³ was irradiated to 3.3×10^{14} p/cm² with EWRIAC of 1 m⁻¹, indicating excellent radiation hardness of LYSO against protons

NSS15, N3C2-2, by Liyuan Zhang, Caltech.

CeF₃: Recovery of LT & RIAC

An order of magnitude larger absorption in a CeF₃ of $2.2^2 \times 15 \times 2.6^2$ cm³ after 1.4×10^{14} p/cm² irradiation, indicating optimized samples are needed.

LYSO: Recovery of LT & RIAC

Small recovery attributed to thermal relaxation

Recovery: LYSO and CeF₃

Recovery observed in CeF_3 during 2 hours with a main τ ~462 mins

LYSO Measurements at Caltech

Measurement after crystal back to Caltech is consistent with that *in situ* No recovery between 77 and 312 days beyond measurement uncertainties

CeF₃ Measurements at Caltech

Measurement after crystal back to Caltech is consistent with that *in situ* Recovery was observed between 83 and 312 days after irradiation

NSS15, N3C2-2, by Liyuan Zhang, Caltech.

Proton Irradiation for LYSO Plates cD

LYSO Plate, 14x14x1.5 mm³

CERN 24 GeV Four LYSO plates: 7.4×10^{13} , $2x 2.4 \times 10^{15}$ and $6.9 \times 10^{15} \text{ p/cm}^2$. Thanks to David Bailleux and Federico Ravotti

Gaussian with a FWHM of about 12 mm

SET Number	USER	Description	BOX	StorageTempReq	IRRAD	Flu. Step	Al 1	AI 2	AI 3	AI 4	AI 5	AI 6	Fluence	Unit	Error (+/- %)	Surface
Set-1986-End-2014		Y11 WLS Fiber	113	Shipping RT	7	1.00E+14	2963	•	•	•			9 28E+43	p/cm ²	8.2	5x5
Set-1985-End-2014		LYSO Plate 001	113	Shipping RT	7	1.00E+16	2966	2972	2975	2979		- /	6.86E+15	/cm ²	6.3	10x10
Set-1984-End-2014	David BAILLEUX	LYSO Plate 609	113	Shipping RT	7	1.00E+15	2989					[2.26E+15	p/cm ²	6.5	10x10
Set-1983-End-2014		LYSO Plate 594	113	Shipping RT	7	3.00E+14	2989					-	2.26E+15	p/cm ²	6.5	10x10
Set-1982-End-2014		LYSO Plate 583	113	Shipping RT	7	1.00E+14	2964						7.43E+13	J/cm ²	7.6	10x10

Davis 67 MeV proton beam with a FWHM of 25 mm Five LYSO plates: $2x \ 1.2 \times 10^{12}$, 1.2×10^{13} , 2.2×10^{13} and 9.5×10^{13} p/cm² Thanks to Bob Hirosky and Mike Mulhearn

No LO Loss up to 10¹⁴ p/cm²

Transmission Loss by 24 GeV Protons

Transmittance measured by a PerkinElmer Lambda 950 spectrophotometer with 0.15% precision for transmittance, or 3.5/m for RIAC

Consistent damage observed for two plates irradiated to 2.4×10^{15} . EWLT degrades to : 80.1%, 74.5% & 72.6% for 7.4 \times 10¹³, 2.3 & 6.9 \times 10¹⁵ of 24 GeV protons with corresponding RIAC at 430 nm of 0.7, 33 and 61 m⁻¹ respectively.

NSS15, N3C2-2, by Liyuan Zhang, Caltech.

сĿ

Proton Induced Absorption in LYSO

Linear fits show RIAC values @430 nm as a function of fluence of 24 GeV and 800 MeV protons respectively for 14 x 14 x 1.5 mm plates and 20 cm long crystals with difference caused by shower leakage

An RIAC value of 3 m⁻¹ after 3×10^{14} p/cm² indicates a LO loss of 6% for 14 x 14 x 1.5 mm plates with WLS readout

A fit for LO vs induced $\mu@430$ nm shows 2.4 cm path length Damage caused by protons and γ -rays are consistent: 6% for 3m⁻¹

Cf-252 Setup for LYSO Plates

NSS15, N3C2-2, by Liyuan Zhang, Caltech.

Result of Fast Neutron Irradiation

4

No degradation in LO was observed after 4×10^{13} n/cm² for 14 x 14 x 1.5 mm LYSO plates

11/4/15

NSS15, N3C2-2, by Liyuan Zhang, Caltech.

RIAC@424 nm: 9.65±0.18 m⁻¹

550

600

Wavelength (nm)

650

700

750

800

500

10 400

11/4/15

450

A Comparison of damages in PWO caused by γ-rays and Neutrons up to 10¹⁹ n/cm²

Gamma Irradiation at JPL $7.8 \times 10^{18}/1.2 \times 10^{19}/4.0 \times 10^{19}$ n/cm² for fast/epithermal/thermal Corresponding dose received: 33 Grad @ 300 Mrad/h PWO SIC 28.5²×30²×220 mm³ RIAC@424 nm (m⁻¹) optical attenuation coefficient (cm Saclay neutron test: PbWO₄ 30 cm⁻¹@ 420 nm under 300 Mrad/h 10.0 o annealing Caltech gamma test: Caltech 500 9 200 % 0.1 cm⁻¹@ 420 nm 10 Dose Rate (rad/h) Under 1 Mrad/h 1.0 PWO SIC 28.5²×30²×220 mm³ IR@1×10⁶ rad/h Neutron induced Caltech damage seems 10 negligible RIAC (m⁻¹) 400 500 600 700 800 900 wavelength (nm) Fig. 2. Optical attenuation coefficient of the irradiated sample before annealing and after successive annealing temperatures. 10

[50] R. Chipaux et al., *Behaviour of PWO scintillators after high fluence neutron irradiation,* in Proc. 8th Int. Conference on Inorganic Scintillators, SCINT2005, A. Getkin and B. Grinyov eds, Alushta, Crimea, Ukraine, September 19–23 (2005), pp. 369–371

NSS15, N3C2-2, by Liyuan Zhang, Caltech.

Summary

- No damage observed in 14 x 14 x 1.5 mm LYSO plates up to 10¹⁴ p/cm² by protons of either 67 MeV or 24 GeV.
- The EWRIAC value is 1 m⁻¹ in a 20 cm long LYSO crystal after 800 MeV protons of 3.3 x 10¹⁴ p/cm². Taking into account multiple Coulomb scattering and hadronic shower leakage this result is consistent with 3 m⁻¹ measured for 14 x 14 x 1.5 mm LYSO plates irradiated by 24 GeV protons. Radiation hardness of LYSO crystals against charged hadrons is excellent as compared to CeF₃ crystals.
- Proton induced radiation damage in LYSO does not recover under room temperature, while that in CeF₃ recovers.
- LO losses caused by 24 GeV protons and y-rays are consistent: about 6% for 14 x 14 x 1.5 mm LYSO plates of 3 m⁻¹ with WLS readout, which can be corrected for by a monitoring system.
- Existing data show that neutron induced radiation damage in crystal scintillators is negligible.
- Additional investigation is needed to fully understand hadron induced radiation damage in crystal scintillators, where special attention should be paid to damage induced by accompanying ionization dose.

LYSO Transverse Transmittance

Transverse transmittance was measured after crystal back to Caltech RIAC depends on position with average consistent to that from LT

KINNO INSTITUTE OF TRCHNOLOG

Comparison with the ETH Data

A factor of five difference is observed between the LYSO plates and the 10 cm long LYSO crystals irradiated by 24 GeV protons

This seems caused by the EM component in hadronic shower which is counted already in the ionization dose