

Development of BaF₂ Crystals for Future HEP Experiments at the Intensity Frontiers

Fan Yang¹, Junfeng Chen^{1,2}, Liyuan Zhang¹, <u>Ren-Yuan Zhu¹</u>

California Institute of Technology
Shanghai Institute of Ceramics, CAS

Nov 2, 2016

Paper N36-7 Presented in NSS/MIC 2016 at Strasbourg

Introduction

- Mu2e-I is building a CsI calorimeter, which has 30 ns fast scintillation and survives up to 100 krad. A radiation level beyond 100 krad, however, is expected by Mu2e-II.
- With sub-ns fast scintillation and excellent radiation hardness up to 120 Mrad, BaF₂ promises a very fast and stable calorimeter for Mu2e-II.
- There are several approaches to handle the 600 ns slow scintillation in BaF₂: solar-blind photodetector and selective doping etc. We report here an exercise of selective doping.

Why BaF_2 ?

BaF₂ has a very fast scintillation component at 220 nm with sub-ns decay time, which provides a good foundation for a very fast calorimetry to face the challenge of the unprecedented high event rate expected in future HEP experiments at the intensity frontier.

"On Quality Requirements to the Barium

Fluoride-Crystals" NIMA 340 (1994) 442-457

Paper N36-7, presented by Ren-Yuan Zhu of Caltech in NSS-2016 at Strasbourg, France 11/2/2016

Properties of 20 cm BaF₂

Large BaF₂ crystals from three vendors show comparable performance

Radiation Hardness of BaF₂

40%/45% light output after 120 Mrad for the fast/slow component Crystals from three vendors have similar radiation hardness

Paper N36-7, presented by Ren-Yuan Zhu of Caltech in NSS-2016 at Strasbourg, France

The Issue of Slow Component

6

- BaF₂ has a slow scintillation component at 300 nm with 600 ns decay time, which is a factor of five in intensity as compared to the fast component. It causes pile up noise.
- Approaches being pursued:
 - Solar blind photo-detector sensitive to 220 nm, not 300 nm: Si APD with interference filter and vacuum photodetector with solar-blind cathode.
 - Crystal development by selective doping: Ce/La/Y has been successfully implemented at BGRI and SICCAS.
- The fast light in BaF₂ is of general interest for a large community beyond the HEP, e.g. GHz X-ray imaging.

11/2/2016 Paper N36-7, presented by Ren-Yuan Zhu of Caltech in NSS-2016 at Strasbourg, France

Slow Suppression

RE doping and solar-blind photodetector are effective in improving F/S

La/Ce Co-Doped BaF₂ Samples from BGRI

Experiments

- Properties measured: Transmittance, Light Output and Decay Kinetics
- 11/2/2016 Paper N36-7, presented by Ren-Yuan Zhu of Caltech in NSS-2016 at Strasbourg, France

Transmittance Along 2 cm Path

Absorption bands at 203/290 nm observed

11/2/2016

Paper N36-7, presented by Ren-Yuan Zhu of Caltech in NSS-2016 at Strasbourg, France

9

La/Ce Induced Absorption Bands

Theoretical Limit

Ce doping induces an absorption band at 290 nm, which reduces the slow component, and improves the overall Fast/Slow ratio.

The intensities of both absorption bands weakened from the seed to the tail because of the large segregation coefficient of La and Ce in BaF₂

Paper N36-7, presented by Ren-Yuan Zhu of Caltech in NSS-2016 at Strasbourg, France

Ce Emission in La/Ce Co-Doped BaF₂

Ce emission is observed in La/Ce Co- doped BaF₂ samples

11/2/2016

Paper N36-7, presented by Ren-Yuan Zhu of Caltech in NSS-2016 at Strasbourg, France

11

Decay Kinetics: La/Ce Co-Doped BaF₂

Decay kinetics was fit to three components to accommodate Ce emission The decay time of slow component decreases with doping

Light Output and 50/2500 ns Ratio

The largest 50/2500 ns ratio observed at the seed end

ID	Dimension (mm ³)	Polishing
BaF ₂ -La BGRI-L	30x30x200	All faces

Experiments

• Properties measured at room temperature : Transmittance, LO and Decay Kinetics

11/2/2016 Paper N36-7, presented by Ren-Yuan Zhu of Caltech in NSS-2016 at Strasbourg, France ¹⁴

Longitudinal and Transverse Transmittance

Longitudinal transmittance approaches the theoretical limit, indicating good optical quality. Transverse transmittance consistent with 2 cm samples

11/2/2016 Paper N36-7, presented by Ren-Yuan Zhu of Caltech in NSS-2016 at Strasbourg, France

PHS: BGRI BaF₂:La/Ce

50 ns

2.5 µs

11/2/2016 Paper N36-7, presented by Ren-Yuan Zhu of Caltech in NSS-2016 at Strasbourg, France

Light Response Uniformity: BGRI BaF₂:La/Ce

La/Ce Codoped 20 cm long BaF₂ crystal shows good light response uniformity.

Decay Kinetics of BGRI BaF₂:La/Ce

Both decay time and LO of slow component decrease with doping

11/2/2016 Paper N36-7, presented by Ren-Yuan Zhu of Caltech in NSS-2016 at Strasbourg, France

18

Radiation Damage: BGRI BaF₂:La/Ce

This La doped BaF₂ crystal is radiation hard up to 10 krad

Summary

- Commercially available BaF₂ crystals provide sufficient fast light with sub-ns decay time and excellent radiation hardness up to 120 Mrad. They promise a very fast and stable calorimeter in a severe radiation environment.
- The issue of BaF₂ crystal's slow scintillation light with 600 ns decay time can be handled by several approaches: photo-detector and crystals.
- Work on La/Ce co-doping in BaF₂ crystals started last Fall. The 1st 20 cm long sample with La/Ce cooping shows the overall F/S ratio increased from 1:5 to 1:2 with good initial light response uniformity. Their radiation hardness, however, need further investigation.