

Development of LuAG:Ce Ceramic Fibers for the RADiCAL Detector Concept

Chen Hu¹, Liyuan Zhang¹, <u>Ren-Yuan Zhu¹</u>, Anhua Wu², Jiang Li², Liangbi Su²

1. California Institute of Technology

2. Shanghai Institute of Ceramics, CAS

Oct 20, 2021

Paper N-20-06 presented in the 2021 IEEE NSS/MIC Virtual Conference

2019 DOE Basic Research Needs Study

on HEP Instrumentation: Calorimetry

https://science.osti.gov/hep/Community-Resources/Reports

Priority Research Direction

PRD 1: Enhance calorimetry energy resolution for precision electroweak mass and missing-energy measurements

PRD 2: Advance calorimetry with spatial and timing resolution and radiation hardness to master high-rate environments

PRD 3: Develop ultrafast media to improve background rejection in calorimeters and improve particle identification

Fast/ultrafast, radiation hard and cost-effective inorganic scintillators needed to achieve energy, spatial and timing resolution for future HEP calorimetry 2021 HEP CPAD Meeting: https://indico.fnal.gov/event/46746/timetable/#all.detailed

Bright & Fast Inorganic Scintillators

	LYSO:Ce	LSO:Ce,Ca ^a	LuAG:Ce ^b	LuAG:Pr ^c	GGAG:Ce ^d	GLuGAG:Ce ^g	GYGAG:Ce ^h	SrHfO ₃ :Ce ⁱ	BaHfO ₃ :Ce ⁱ	CeBr ₃ ^k	LaBr ₃ :Ce ^k
Density (g/cm³)	7.4	7.4	6.76	6.76	6.5	6.80	5.80	7.56	8.5	5.23	5.29
Melting points (°C)	2050	2050	2060	2060	1850 ^e	>1900 ^e	1850 ^e	2730	2620	722	783
X ₀ (cm)	1.14	1.14	1.45	1.45	1.63	1.38	2.11	1.17	0.98	1.96	1.88
R _M (cm)	2.07	2.07	2.15	2.15	2.20	1.57	2.43	2.03	1.87	2.97	2.85
λ _ι (cm)	20.9	20.9	20.6	20.6	21.5	20.8	22.4	20.6	19.4	31.5	30.4
Z _{eff}	64.8	64.8	60.3	60.3	51.8	55.2	45.4	60.9	62.9	45.6	45.6
dE/dX	9.55	9.55	9.22	9.22	8.96	9.28	8.32	9.80	10.7	6.65	6.90
λ _{peak} (nm)	420	420	520	310	540	550	560	410	400	371	356
Refractive Index	1.82	1.82	1.84	1.84	1.92 ^f	1.92 ^f	1.92 ^f	2.0	2.1	1.9	1.9
Normalized Light Yield	100	116	83	73	115	161	167	133	133	99	153
Total Light yield (ph/MeV)ª	30,000	34,800	25,000	22,000	34400	48,200	50,000	5,000 ⁱ	5,000 ⁱ	30,000	46,000
Decay time (ns) ^a	40	31	46	20	53	84 148	100	42	25	17	20
Light Yield in 1 st ns (photons/MeV)	740	950	540	1,100	640	570	500	120	200	1,700	2,200
Issues					high thermal neutron x-section			incongruent		hygroscopic	

^a Spurrier, et al., IEEE T. Nucl. Sci. 2008,55 (3): 1178-1182

^b Liu, et al., Adv. Opt. Mater., 4: 731–739. doi: 10.1002/adom.201500691

^c Yanagida, et al., *IEEE T. Nucl. Sci.* 2012, 59(5): 2146

^d Luo, et al., *Ceram. Int.* 2016, 41(1): 873

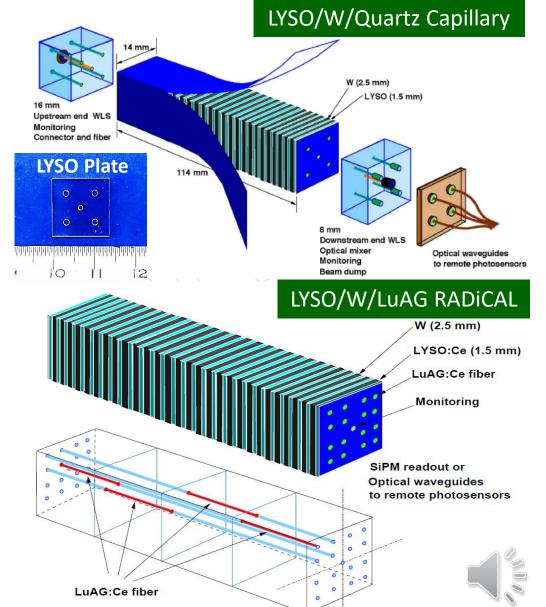
 $^{\rm e}$ The melting point of these materials various with different composition from 1800 to 1980 °C. The data is based on reported values.

^f Kuwano, et al., J. Cryst. Growth. 1988, 92: 17

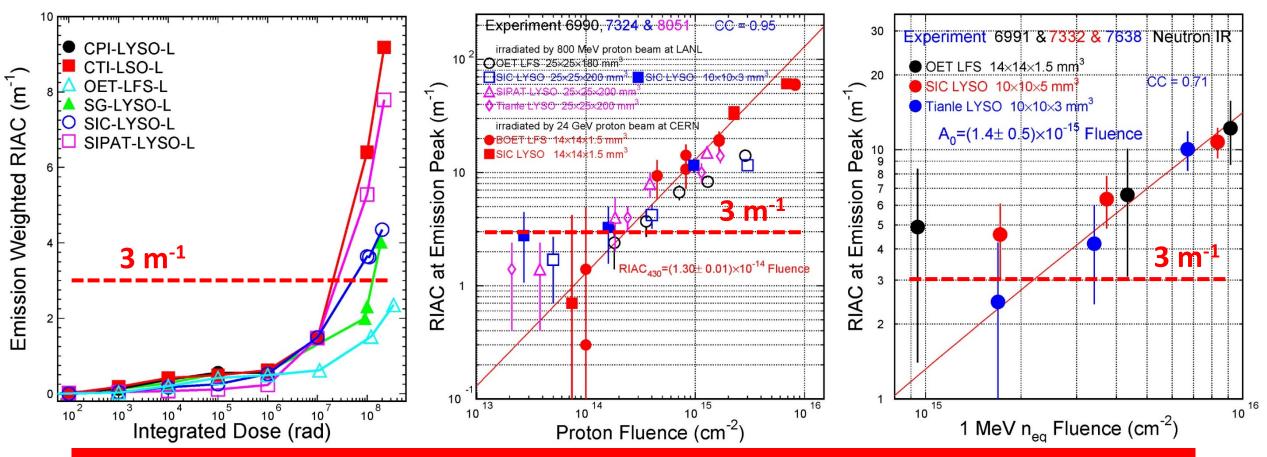
^g Wu, et al., *NIMA* 2015, 780: 45

^h Cherepy, et al., IEEE T. Nucl. Sci. 2013, 60(3): 2330

ⁱvan Loef, et al., *IEEE T. Nucl. Sci.* 2007, 54(3):741


 j Based on $^{137}\mbox{Cs}$ gamma-ray excitation (shaping time of 4 μs) light yield result in ref. i k Data based on single crystals

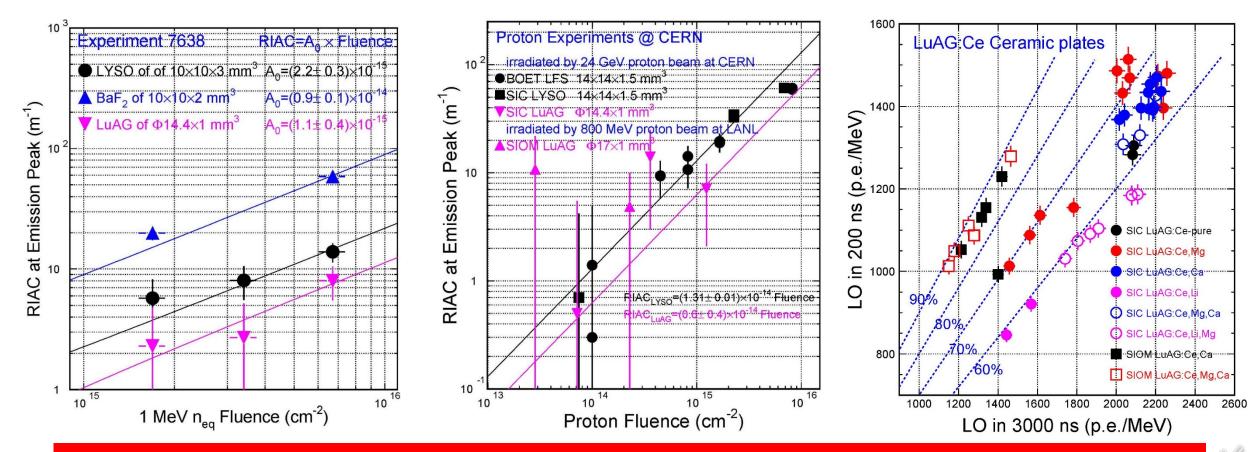
Why LuAG:Ce Ceramic Fibers?



- It meets the DOE BRN PRD for calorimetry:
 - Bright, fast and rad hard scintillators for HL-LHC & FCC-hh;
 - Cost-effective scintillators for lepton Higgs factory;
 - Ultrafast scintillators for high-rate experiment (Mu2e-II).
- An LYSO/W/Quartz Capillary Shashlik calorimetry has been under development in a decade for endcap calorimeter at the HL-LHC:
 - Absorbed dose: up to 100 Mrad,
 - Charged hadron fluence: up to 6×10¹⁴ p/cm²,
 - Fast neutron fluence: up to 3×10¹⁵ n/cm².
- LuAG:Ce ceramic fibers are now proposed for the RADiCAL concept featured with ultra-compact, radiation hard and fast-timing:
 - Use LuAG:Ce to replace quartz capillary as WLS; and
 - A short LuAG:Ce segment at the shower maximum would provide precision timing.

🚯 LYSO:Ce for CMS Barrel Timing Layer 🎡

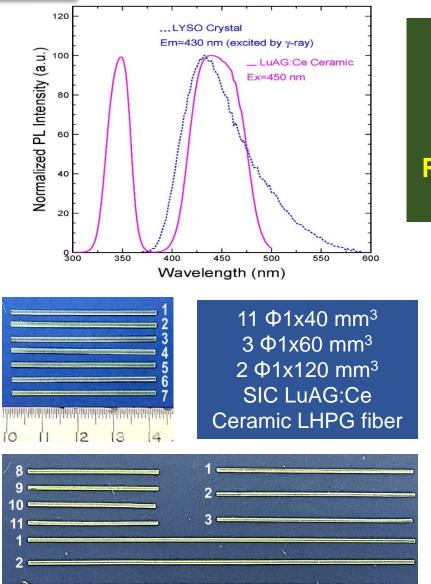
CMS LYSO spec: RIAC < 3 m⁻¹ after 4.8 Mrad, 2.5 x 10^{13} p/cm² & 3.2 x 10^{14} n_{eg}/cm²


Damage induced by protons is an order of magnitude larger than that from neutrons Due to ionization energy loss in addition to displacement and nuclear breakup

10/20/2021

LuAG:Ce Ceramics Radiation Hardness

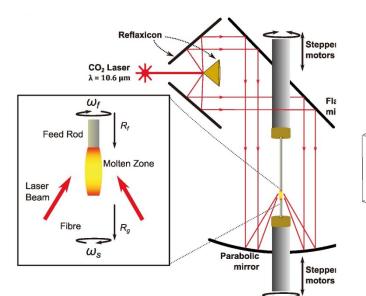
LuAG:Ce ceramics show a factor of two better radiation hardness than LYSO crystals up to 6.7×10^{15} n_{eq}/cm² and 1.2×10^{15} p/cm², promising for FCC-hh Paper N18-05 in the 2020 NSS CR, DOI: 10.1109/NSS/MIC42677.2020.9507969



R&D on slow component suppression by Ca co-doping, and radiation hardness by $\gamma/p/n_{c}$

10/20/2021

RADiCAL: LYSO/W/LuAG Shashlik ECAL



RADiCAL RADiation hard innovative CALorimetry See R. Ruchti, in the CPAD meeting

Excitation of LuAG:Ce ceramics

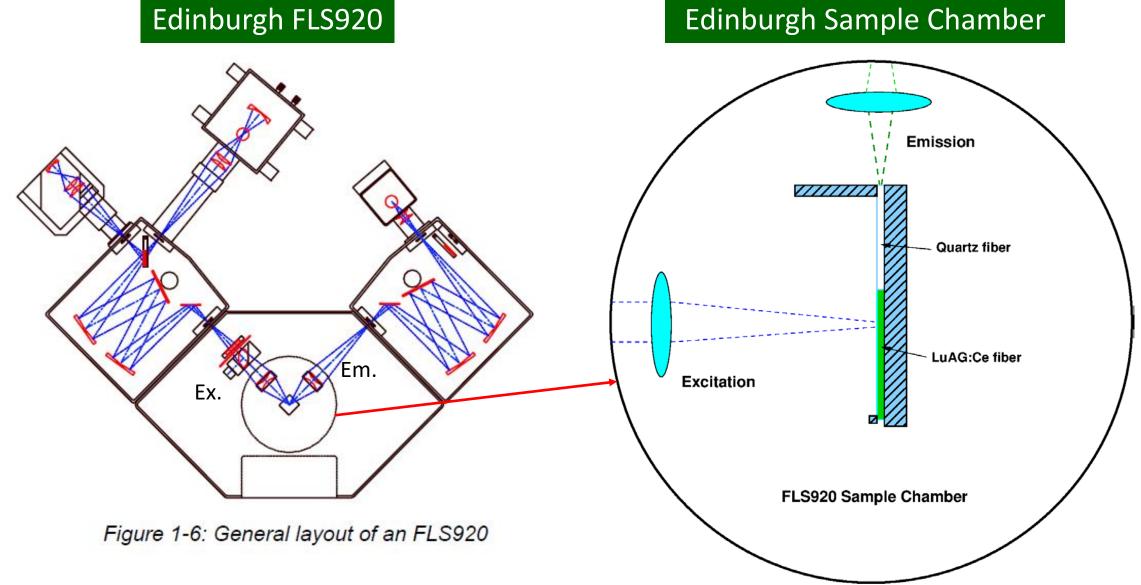
matches well LYSO:Ce emission:

16 LuAG:Ce ceramic fibers Laser Heated Pedestal Growth

Silica cladding LuAG:Ce fiber Silica core LuAG:Ce NP in silica LYSO/W/LuAG RadiCal W (2.5 mm) LYSO:Ce (1.5 mm) LuAG:Ce fiber Monitoring SiPM readout or

LuAG:Ce fiber

LuAG:Ce fiber

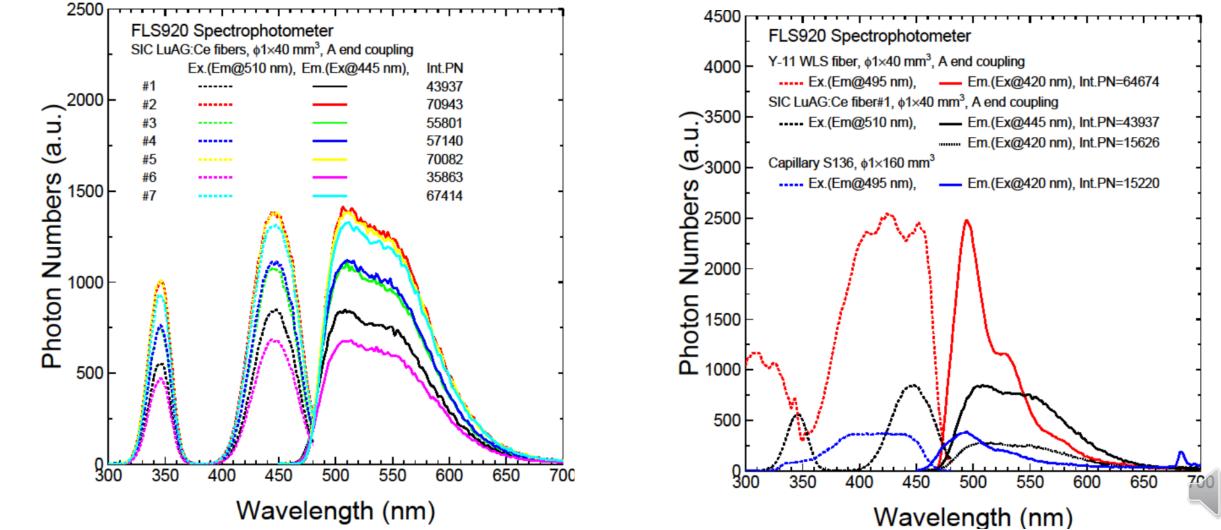

SiPM readout or Optical waveguides to remote photosensors

10/20/2021

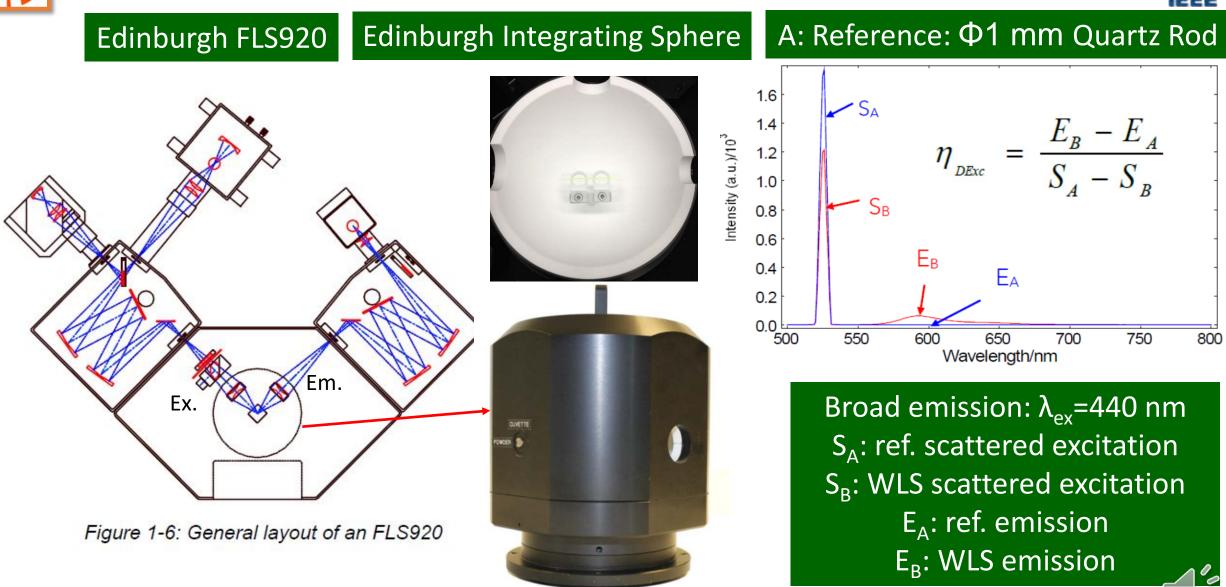
WLS Ex./Em. with Edinburgh FLS920

10/20/2021

Paper N-20-06 presented by Ren-Yuan Zhu, Caltech, in the 2021 IEEE NSS/MIC Virtual Conference


8

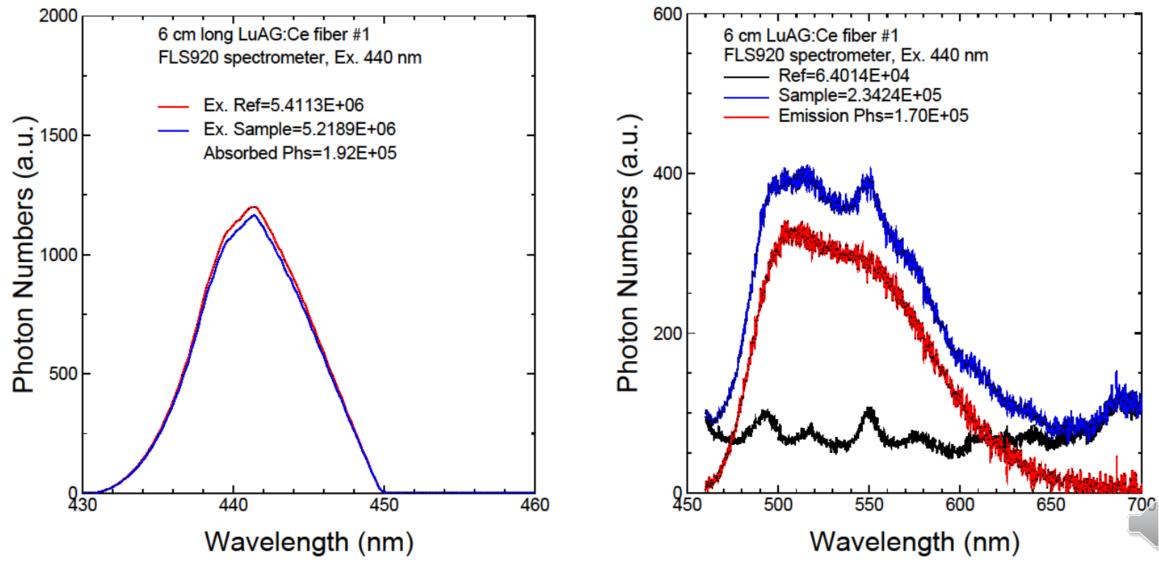
Ex/Em: LuAG:Ce, Y-11 and Quartz Capillary


7 Φ1×40 mm fibers: consistent excitation/emission spectra with different intensity LuAG:Ce intensity: <Y-11 but comparable with capillary: ×3 @445 nm as @420 nm

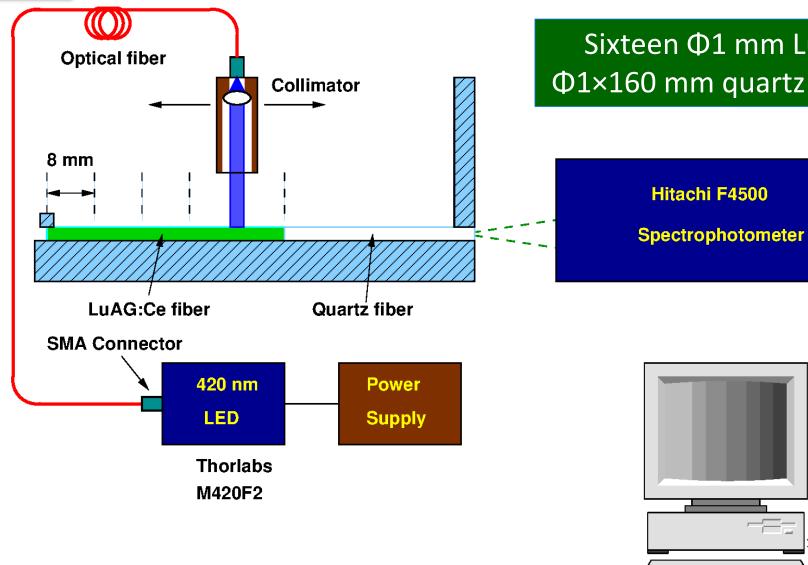
WLS Quantum Yield with FLS920/Integrating Sphere

10/20/2021

Paper N-20-06 presented by Ren-Yuan Zhu, Caltech, in the 2021 IEEE NSS/MIC Virtual Conference


10

Quantum Yield: Φ1×60 mm Fiber #1



Consistent LuAG:Ce emission and QY = 0.88±0.05 with a quartz rod reference

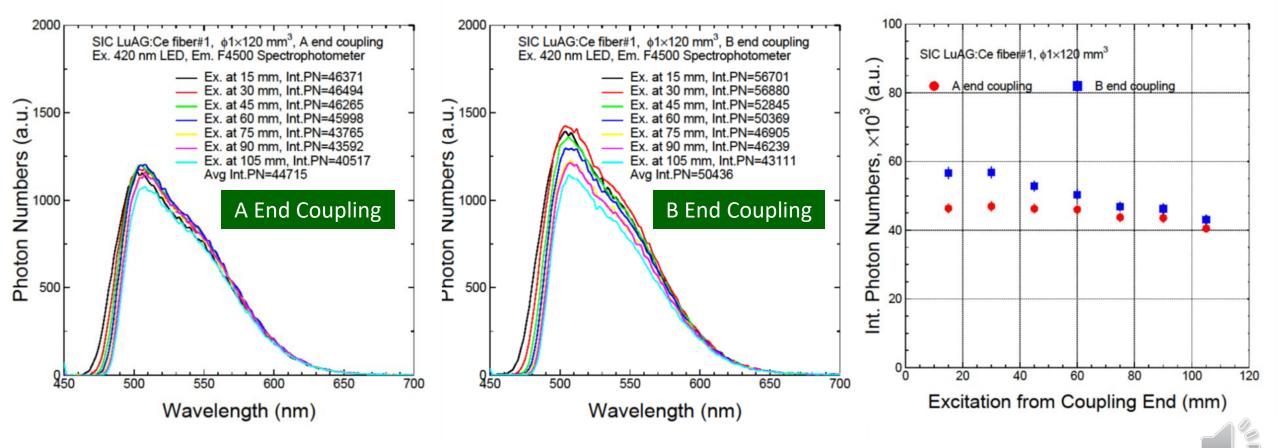
WLS Uniformity with 420 nm LED

Sixteen Φ1 mm LuAG:Ce fibers, compared to a Φ1×160 mm quartz capillary and a Φ1×40 mm Y-11

GPIB

Light output measured for two alternative ends coupled to a F4500 spectrophotometer via a $\Phi1 \text{ mm quartz}$ fiber with excitation at several positions along the LuAG fiber

12

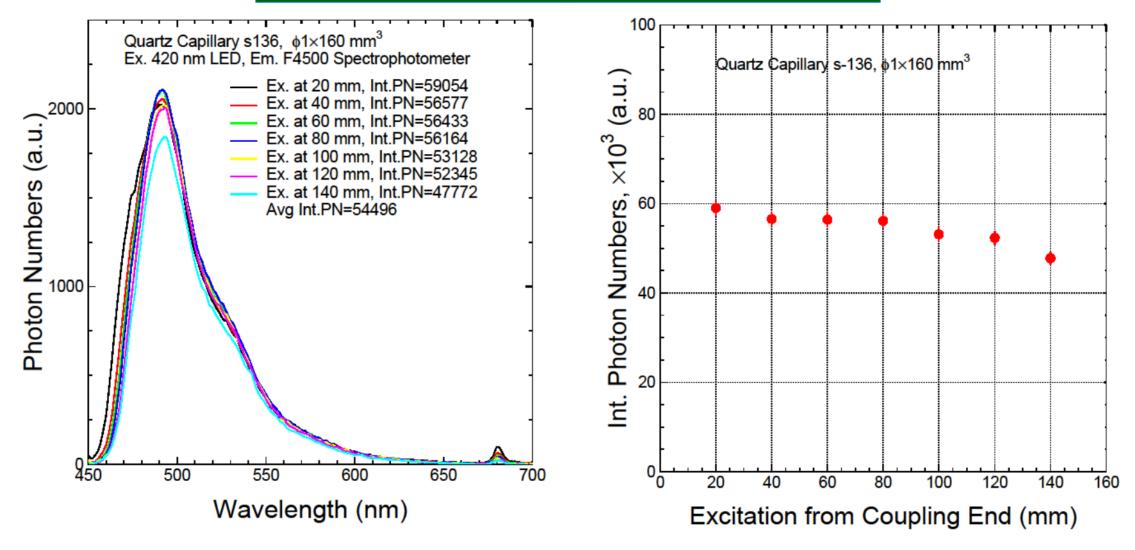

10/20/2021

10/20/2021

Paper N-20-06 presented by Ren-Yuan Zhu, Caltech, in the 2021 IEEE NSS/MIC Virtual Conference

Uniformity of Φ1×120 mm Fiber #1

Good intensity and uniformity observed for one coupling end



Output Of Φ1×160 mm Quartz Capillary

Good intensity and uniformity observed

10/20/2021

Paper N-20-06 presented by Ren-Yuan Zhu, Caltech, in the 2021 IEEE NSS/MIC Virtual Conference

14

Summary: 16 Ф1 mm LuAG:Ce Fibers

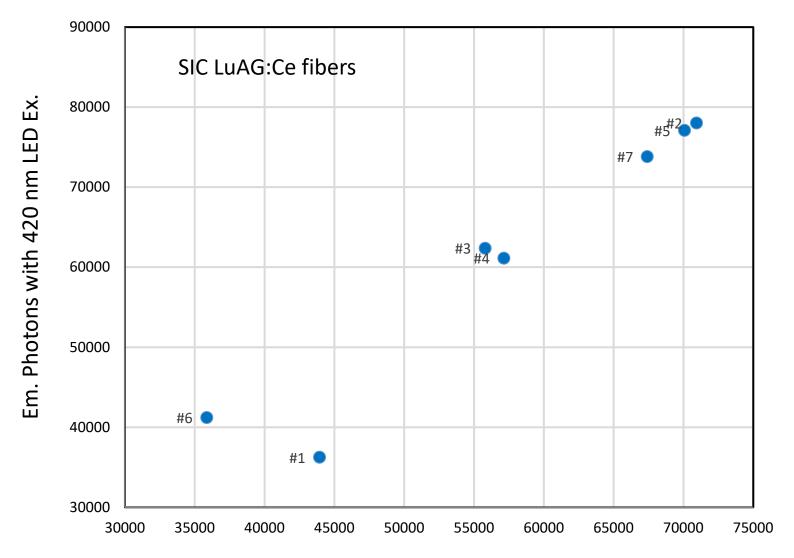
LuAG:Ce has comparable intensity and uniformity with Quartz Capillary

	Longth (om)	Quantum Viold	A end coupl	ing Ph# (a.u.)	B end coupling Ph# (a.u.)		
φ 1 mm LuAG:Ce Fibers	Length (cm)	Quantum Yield	Average	RMS (%)	Average	RMS (%)	
#1	4	0.78 ±0.05	36099	1.9	43365	5.4	
#2	4		71524	6.4	79592	3.6	
#3	4	0.82 ±0.05	61897	1.5	62084	6.5	
#4	4	0.78 ±0.05	61181	1.8	63105	4.0	
#5	4		75425	2.6	78344	4.0	
#6	4	0.85 ±0.05	39110	9.8	43159	3.6	
#7	4		71058	6.8	75216	4.6	
#8	4	0.82 ±0.05	75235	7.7	76735	0.9	
#9	4	0.76 ±0.05	34032	2.7	48300	14.4	
#10	4	0.78 ±0.05	36836	8.2	43566	9.1	
#11	4	0.81 ±0.05	71689	12.5	73922	8.9	
Y11 WLS	4	0.87 ±0.05	184690	35.6	232682	22.7	
#1	6	0.88 ±0.05	48103	11.2	56280	2.6	
#2	6	0.88 ±0.05	21229	69.0	23829	58.1	
#3	6	0.79 ±0.05	34796	18.7	41303	24.0	
#1	12		44715	5.0	50436	10.6	
#2	12		36313	22.8	43746	20.5	
Capillary s136	16		54496	6.8			

10/20/2021

Summary

Future HEP experiments require fast and radiation hard calorimetry. The **RADICAL** concept utilizes bright, fast and radiation hard LYSO:Ce crystals and LuAG:Ce ceramic wavelength shifters for an ultra-compact, radiation hard and fast-timing shashlik calorimeter for the HL-LHC and FCC-hh. A total of 16 01 mm LuAG:Ce ceramic fibers of 4, 6 and 12 cm were fabricated by using Laser Heated Pedestal Growth technique at SIC. The 1st batch LuAG:Ce WLS fibers show a quantum yield up to 88% with light output and uniformity comparable to quartz capillary. R&D will continue to improve optical quality of LuAG:Ce ceramic fibers. Beam tests are planned for a 3 × 3 LYSO/W/LuAG RADiCAL matrix to measure energy and timing resolution, and for individual cells to verify their radiation hardness against y-rays and hadrons.


Work supported in part by the US Department of Energy Grants DE-SC0011925

Emission Intensities: 420 vs. 445 nm Ex.

Good correlation observed between emission intensities with 420 nm and 445 nm excitation. A factor of three more light is observed with 445 nm excitation as compared to 420 nm

Em. Photons with 445 nm Ex. at PLS920 (a.u.)