

Neutron and Proton-Induced Radiation Damage in LuAG Scintillating Ceramics

<u>Chen Hu¹</u>, Jiang Li², Benxue Jiang³, Liyuan Zhang¹ and Ren-Yuan Zhu¹

1. California Institute of Technology

2. Shanghai Institute of Ceramics, CAS

3. Shanghai Institute of Optics and Fine Mechanics, CAS

Nov 4, 2020

Paper N-18-05 presented in the 2020 IEEE NSS/MIC Virtual Conference

Why LuAG Ceramics?

- Future applications of inorganic scintillators:
 - Ultrafast and rad hard scintillators for HL-LHC & FCC-hh;
 - Ultrafast scintillators for high rate (Mu2e-II);
 - Ultrafast scintillators for GHz hard X-ray imaging in future free electron laser facilities (DMMSC).
- Millimeter slices of LYSO:Ce, BaF₂:Y and LuAG:Ce survive the severe radiation environment expected at the HL-LHC with 3,000 fb⁻¹:
 - Absorbed dose: up to 100 Mrad,
 - Charged hadron fluence: up to 6×10¹⁴ p/cm²,
 - Fast neutron fluence: up to 3×10¹⁵ n_{eq}/cm².
- LuAG ceramic slices are more cost-effective as compared to crystals :
 - Simpler production technology at a lower temperature;
 - Higher raw material usage; and
 - No need for after growth mechanical processing.

Transparent Ceramics with Cubic Structure

Ceramic Scintillators	Crystal system	Transparency	Density (g/cm ³)
$Y_{1.34}Gd_{0.6}Eu_{0.06}O_3$	Cubic	Transparent	5.92
Gd ₂ O ₂ S:Pr,Ce,F	Hexagonal	Translucent	7.34
Gd ₃ Ga ₅ O ₁₂ :Cr,Ce	Cubic	Transparent	7.09
BaHfO ₃ :Ce	Cubic	Opaque	8.35

Annu. Rev. Mater. Sci. 1997. 27:69-88

Cost-effective transparent ceramics

Opaque or translucent

Transparent

11/5/2020

Paper N-18-05 presented by Chen Hu, Caltech, in the 2020 IEEE NSS/MIC Virtual Conference

Fast Inorganic Scintillators

	LYSO:Ce	LSO:Ce,Ca ^a	LuAG:Ce ^b	LuAG:Pr ^c	GGAG:Ce ^d	GLuGAG:Ce ^g	GYGAG:Ce ^h	SrHfO ₃ :Ce ⁱ	BaHfO ₃ :Ce ⁱ	CeBr ₃ ^k	LaBr ₃ :Ce ^k
Density (g/cm ³)	7.4	7.4	6.76	6.76	6.5	6.80	5.80	7.56	8.5	5.23	5.29
Melting points (°C)	2050	2050	2060	2060	1850 ^e	>1900 ^e	1850 ^e	2730	2620	722	783
X ₀ (cm)	1.14	1.14	1.45	1.45	1.63	1.38	2.11	1.17	0.98	1.96	1.88
R _M (cm)	2.07	2.07	2.15	2.15	2.20	1.57	2.43	2.03	1.87	2.97	2.85
λ _ι (cm)	20.9	20.9	20.6	20.6	21.5	20.8	22.4	20.6	19.4	31.5	30.4
Z _{eff}	64.8	64.8	60.3	60.3	51.8	55.2	45.4	60.9	62.9	45.6	45.6
dE/dX	9.55	9.55	9.22	9.22	8.96	9.28	8.32	9.80	10.7	6.65	6.90
λ _{peak} (nm)	420	420	520	310	540	550	560	410	400	371	356
Refractive Index	1.82	1.82	1.84	1.84	1.92 ^f	1.92 ^f	1.92 ^f	2.0	2.1	1.9	1.9
Normalized Light Yield	100	116	83	73	115	161	167	133	133	99	153
Total Light yield (ph/MeV)ª	30,000	34,800	25,000	22,000	34400	48,200	50,000	5,000 ⁱ	5,000 ⁱ	30,000	46,000
Decay time (ns) ^a	40	31	46	20	53	84 148	100	42	25	17	20
Light Yield in 1 st ns (photons/MeV)	740	950	540	1,100	640	570	500	120	200	1,700	2,200
Issues					high t	hermal neutron x	-section	incon	gruent	hyg	roscopic

^a Spurrier, et al., IEEE T. Nucl. Sci. 2008,55 (3): 1178-1182

^b Liu, et al., Adv. Opt. Mater., 4: 731–739. doi: 10.1002/adom.201500691

^c Yanagida, et al., *IEEE T. Nucl. Sci.* 2012, 59(5): 2146

^d Luo, et al., *Ceram. Int.* 2016, 41(1): 873

 $^{\rm e}$ The melting point of these materials various with different composition from 1800 to 1980 °C. The data is based on reported values.

^f Kuwano, et al., J. Cryst. Growth. 1988, 92: 17

^g Wu, et al., *NIMA* 2015, 780: 45

^h Cherepy, et al., *IEEE T. Nucl. Sci.* 2013, 60(3): 2330

ⁱvan Loef, et al., *IEEE T. Nucl. Sci.* 2007, 54(3):741

 j Based on 137 Cs gamma-ray excitation (shaping time of 4 μs) light yield result in ref. i k Data based on single crystals

11/5/2020

Paper N-18-05 presented by Chen Hu, Caltech, in the 2020 IEEE NSS/MIC Virtual Conference

Performance of LuAG:Ce Ceramics

Light output: 1,400 p.e./MeV with a fast decay time of about 50 ns and a slow decay time of about 1 µs. Excellent radiation hardness against ionization dose up to 220 Mrad.

Ca²⁺ co-doping suppresses the slow component. F/T ratio, defined as LO(200 ns) /LO(3 μs), reaches 90%.

C. Hu, et al., NIMA 954 (2020) 161723

LuAG Samples for Neutron/Proton Irradiation

Mg²⁺ co-doped LuAG:Ce ceramics show a higher light output Ca²⁺ and Mg²⁺ co-doped LuAG:Ce show a higher F/T ratio

Neutron Irradiation Samples

Proton Irradiation Samples

Sample ID	Dimension (mm ³)	200 ns L.O. (p.e./MeV)	F/T ratio (%)	Experiment	Fluence (cm ⁻²)
n-1	Ф14.4 x 1	1474	66.6	LANSCE-7638	1.7×10 ¹⁵
n-2	Ф14.4 x 1	1479	65.6	LANSCE-7638	3.4×10 ¹⁵
n-3	Ф14.4 x 1	1514	73.5	LANSCE-7638	6.7×10 ¹⁵
Sample ID	Dimension (mm ³)	200 ns L.O. (p.e./MeV)	F/T ratio (%)	Experiment	Fluence (cm ⁻²)
p-1	Ф14.4 x 1	1486	74.2	CERN	7.1×10 ¹³
p-2	Ф14.4×1	1305	62.5	CERN	3.6×10 ¹⁴
р-3	Ф14.4×1	1283	61.6	CERN	1.2×10 ¹⁵
p-4	Ф17 x 1	1013	88.0	LANSCE-8051	2.4×10 ¹³
n-5	<u> </u>	1049	89.0	LANSCE-8051	2 3×10 ¹⁴

Neutron Irradiation at East Port of LANSCE

1 MeV equivalent neutron fluence is 1.7, 3.4, and 6.7 × 10¹⁵ cm⁻² for samples n-1, n-2, and n-3, respectively

Particles	n-1 Fluence (cm ⁻²)	n-2 Fluence (cm ⁻²)	n-3 Fluence (cm ⁻²)
Thermal and Epithermal Neutrons (0 < En < 1 eV)	1.80×10 ¹⁵	3.62×10 ¹⁵	7.14×10 ¹⁵
Slow and Intermediate Neutrons (1 eV < En <1 MeV)	6.57×10 ¹⁵	1.32×10 ¹⁶	2.60×10 ¹⁶
Fast Neutron Fluence (En > 1 MeV)	7.26×10 ¹⁴	1.46×10 ¹⁵	2.88×10 ¹⁵
Very Fast Neutron Fluence (En > 20 MeV)	1.38×10 ¹⁴	2.78×10 ¹⁴	5.49×10 ¹⁴
1 MeV Equivalent Neutron Fluence	1.69×10 ¹⁵	3.40×10 ¹⁵	6.71×10 ¹⁵
Proton Fluence (Ep > 1 MeV)	2.11×10 ¹²	4.24×10 ¹²	8.38×10 ¹²
Photon Dose (rad)	1.05×10 ⁶	2.11×10 ⁶	4.16×10 ⁶

11/5/2020

Paper N-18-05 presented by Chen Hu, Caltech, in the 2020 IEEE NSS/MIC Virtual Conference

IEEE

LuAG:Ce after Neutron Irradiations

8

Small losses in T/LO up to $6.7 \times 10^{15} n_{eq}$ /cm² with F/T ratio unchanged

RIAC and LO vs. Neutron Fluence

90% light output remains after an 1 MeV equivalent neutron fluence of $6.7 \times 10^{15} n_{eq}/cm^2$ Radiation hardness of LuAG ceramics against neutrons is about a factor of two better than LYSO

Proton Irradiations at CERN PS & LANSCE

Proton fluence measured by dosimeters of 10×10 and 20×20 mm² at CERN.

Proton fluence: 7.1×10^{13} , 3.6×10^{14} , and 1.2×10^{15} p cm⁻² for samples p-1, p-2, and p-3, respectively.

G Plate Φ17×1 mm ³					
800	MeV proton beam (FWHM= 2.5 cm)				
	SIOM LuAG:Ce,Ca,Mg				

9

8

Environment/Source	Proton Flux (p s ⁻¹ cm ⁻²)	Fluence on Crystal (p cm ⁻²)
CMS FCAL (η=1.4) at HL-LHC	2.8 × 10 ⁵	2.5 × 10 ¹³ / 3000 fb ⁻¹
CMS FCAL (η=3.0) at HL-LHC	2.3 × 10 ⁶	2.1 × 10 ¹⁴ / 3000 fb ⁻¹
WNR facility of LANSCE	Up to 2 × 10 ¹⁰	Up to 3 × 10 ¹⁵

Proton Fluence: 2.4×10¹³ and 2.3×10¹⁴ p/cm² applied to samples p-4 and p-5, respectively

11/5/2020

Paper N-18-05 presented by Chen Hu, Caltech, in the 2020 IEEE NSS/MIC Virtual Conference

10

LuAG:Ce after Proton Irradiations

Small loses in T/LO after 1.2×10^{15} p/cm² by 24 GeV protons at CERN and after 2.3×10^{14} p/cm² by 800 MeV protons at LANSCE with F/T unchanged

Paper N-18-05 presented by Chen Hu, Caltech, in the 2020 IEEE NSS/MIC Virtual Conference

11/5/2020

RIAC and LO vs. Proton Fluence

Radiation hardness of LuAG ceramics against protons is also a factor of two better than LYSO 90% light output remains after a proton irradiation fluence up to 1.2×10^{15} p/cm²

Summary

Ca²⁺ and Mg²⁺ co-doped LuAG:Ce ceramic samples were fabricated and irradiated up to 6.7×10¹⁵ n_{eq}/cm² and 1.2×10¹⁵ p/cm² respectively at LANSCE and CERN.

Mg²⁺ co-doping in LuAG ceramics improves light output, while Ca²⁺ and Mg²⁺ co-doping improves F/T ratio.

LuAG ceramics were found to have a factor of two better radiation hardness than LYSO crystals against both neutrons and protons. With 90% of the light output remains in 1 mm thick samples after neutron and proton irradiation up to 6.7×10^{15} n_{eq}/cm² and 1.2×10^{15} p/cm² respectively it is promising for applications at the HL-LHC and FCC-hh.

R&D will continue to develop Ca²⁺ co-doped LuAG:Ce,Ca ceramics to further improve its optical quality, F/T ratio and radiation hardness.

This work was supported in part by the US Department of Energy Grants DE-SC0011925 and DE-AC52-06NA25396