

Proton Induced Radiation Damage in Fast Inorganic Crystals

Chen Hu, Fan Yang, <u>Liyuan Zhang</u>, Ren-Yuan Zhu California Institute of Technology

Jon Kapustinsky, Ron Nelson and Zhehui Wang Los Alamos National Laboratory

Paper N-02-05 presented in NSS-MIC-2019 at Manchester, Oct. 28, 2019

Introduction

Future HEP experiments at the energy frontier (HL-LHC) faces a challenge of severe radiation by ionization dose, as well as charged and neutral hadrons

The 800 MeV proton beam at the Weapons Neutron Research facility of Los Alamos Neutron Science Center (WNR of LANSCE) is ideal for investigations on charged hadron induced radiation damage.

Three experiments 6501 (2014), 6990 (2015) and 7324(2017) were carried out at LANSCE. Inorganic crystals of various size were irradiated up to 3 x 10^{15} p/cm² with their longitudinal transmittance measured *in situ*. In addition, LYSO plates of up to 5 mm thick were also irradiated by 24 GeV protons at CERN up to 1.2 x 10^{15} /cm².

This report focuses on results of LYSO and BaF₂ crystals for future HEP experiments at the energy and intensity frontiers.

Energy Spectra Expected at HL-LHC

FLUKA simulations: charged hadrons and neutrons are peaked at hundreds MeV and MeV respectively Proton and neutron (Paper N21-6) induced damages are investigated at Blue Room and East Port of LANSCE

NSS19, N02-5, by Liyuan Zhang, Caltech

Proton Irradiation at LANSCE

Los Alamos Neutron Science Center (LANSCE)

Setup for Experiment 7324

CHNOLOC

Samples and 800 MeV Proton Fluence

No.	Samples	Dimensions (mm ³)	Fluence (p/cm²)	Experiment	
1	BaF ₂	30×30×20	6.1×10 ¹² – 1.2×10 ¹⁵	7324	
2	BaF ₂	30×30×20	2.9×10 ¹⁴	6990	
3	BGO	25×25×200	1.8×10 ¹⁴	6990	
4	BGO	17×17×17	2.9×10 ¹⁴	6990	
5	SIC LYSO	25×25×200	5.0×10 ¹³ - 3.0×10 ¹⁵	7324	
6	LFS	25×25×180	1.8×10 ¹⁴ – 2.9×10 ¹⁵	6990	
7	SG LYSO	25×25×200	1.6×10 ¹⁴ - 3.3×10 ¹⁴	6501	
8	Shashlik (LFS/W/Capillary)	34×34×215	1.2×10 ¹⁵ – 1.9×10 ¹⁵	6990 and 7324	
9	PWO	25×25×5	4.4×10 ¹² – 1.2×10 ¹⁵	7324	
10	PWO	28.5 ² ×30 ² ×220	1.8×10 ¹⁴	6990	
11	2×PWOs, 2×BaF ₂	25×25×5	2.7~1013	7324	
	3×LYSO	10×10×3	2.7×1010		
12	$2 \times PWOs$, $2 \times BaF_2$	25×25×5	1 6×10 ¹⁴	7324	
	3×LYSO	10×10×3	1.0×10		
13	$2 \times PWOs$, $2 \times BaF_2$	25×25×5	0.7×1014	7324	
	3×LYSO	10×10×3	9.7×10		

BaF₂: LT Damage and RIAC

A 2 cm Hellma BaF_2 was irradiated from 6.1×10^{12} to 1.2×10^{15} p/cm² in six steps with transmittance between 330 and 650 nm measured *in-situ, and was later* measured at Caltech between 200 and 650 nm with consistent result, indicating a promising radiation hardness for its fast component.

LYSO: LT Damage and RIAC

In Exp-7324, a 20 cm long SIC-LYSO was irradiated from 5.0×10^{13} to 3.0×10^{15} p/cm² with longitudinal transmittance measured *in-situ*, showing inferred absorption coefficient consistent with 20 cm long SG-LYSO (Exp-6501, 2014) and 20 cm long LFS (Exp-6990, 2015).

Proton IR Experiment at CERN

3 batches of samples were irradiated by proton at CERN. The proton fluences were measured by dosimeters with dimension of 10×10 and 20×20 mm³ respectively for each batch.

Data from CERN: http://ps-irrad.web.cern.ch/documents/run2017/Sets-2017.html

Set	Requested Fluence	Delta SEC	Date In	Date Out	Dosimeter	Fluence (p/cm²)	Error (± %)	Comment
3000-3006	4.00E+13 p/cm ²	3.02E+07	20/11/2017 10:00	20/11/2017 14:13	3736	7.46E+13	7.0	10x10
		3.02E+07	20/11/2017 10:00	20/11/2017 14:13	3740	5.64E+13	7.0	20x20
3006-3013	2.00E+14 p/cm ²	1.52E+08	18/11/2017 19:33	20/11/2017 09:59	3737	3.75E+14	7.0	10x10
		1.52E+08	18/11/2017 19:33	20/11/2017 09:59	3739	2.83E+14	7.0	20x20
3014-3020	1.00E+15 p/cm ²	1.80E+08	08/11/2017 18:34	18/11/2017 19:33	3735 /3745/3751	1.27E+15	7.0	10x10
		2.36E+08	08/11/2017 18:34	18/11/2017 19:33	3738/3758	1.09E+15	7.0	20x20

Sample list for Proton IR at CERN

The fluence values were calculated based on samples cross section

			Dimensions						
Group	Samples	Vendor	(mm³)	Quantity	SN	Mark	CERN ID	Fluence	Date
1	BaF ₂ :Y/BaF ₂	BGRI	10×10×5	2	BU1/BY1	BU1, BY1	3000/3001	7.46E+13	11/20
		SIC	10×10×5	2	Y5-1/U5-1	Y1, U1	3002/3003	7.46E+13	11/20
	LYSO:Ce,Ca	SIC	20x20x 2	1	170809-6	6	3004	5.64E+13	11/20
		Tianle	10×10×1.5	1	B3	B3	3005	7.46E+13	11/20
	LuAG:Ce	SIC	Ф14×1	1	G4	G4	3006	7.13E+13	11/20
	Total			7					
2	BaF ₂ :Y/BaF ₂	BGRI	10×10×5	2	BU2/BY2	BU2, BY2	3007/3008	3.75E+14	11/18
		SIC	10×10×5	2	Y5-2/U5-2	Y2, U2	3009/3010	3.75E+14	11/18
	LYSO:Ce,Ca	SIC	20×20×2	1	170809-5	5	3011	2.83E+14	11/18
		Tianle	10×10×1.5	1	B9	B9	3012	3.75E+14	11/18
	LuAG:Ce	SIC	Ф14×1	1	G5	G5	3013	3.58E+14	11/18
	Total			7					
3	BaF ₂ :Y/BaF ₂	BGRI	10×10×5	2	BU3/BY3	BU3, BY3	3014/3015	1.27E+15	11/8
		SIC	10×10×5	2	Y5-3/U5-3	Y3, U3	3016/3017	1.27E+15	11/8
	LYSO:Ce,Ca	SIC	20x20x2	1	170809-7	7	3018	1.09E+15	11/8
		Tianle	10×10×1.5	1	B10	B10	3019	1.27E+15	11/8
	LuAG:Ce	SIC	Ф14×1	1	G6	G6	3020	1.24E+15	11/8
	Total			7					
	Grant Total			21					

EWRIAC and Light Output Loss

LYSO and BaF_2 plates show low EWRIAC and 85% light output after 10¹⁵ p/cm², indicating excellent radiation hardness against protons

NSS19, N02-5, by Liyuan Zhang, Caltech

Proton and Neutron Induced RIAC in LYSO

LYSO crystals from different vendors show consistent damage for protons of 800 MeV and 24 GeV: RIAC @ 430 nm = $1.3 \times 10^{-14} F_{p}$

NSS19, N02-5, by Liyuan Zhang, Caltech

LO versus RIAC

LYSO and BaF₂ crystals irradiated by protons show consistent correlation with RIAC values for samples irradiated by gamma and neutrons, indicating proton induced LO loss can be corrected by a precision monitoring system.

Fast crystal scintillators were irradiated by 800 MeV and 24 GeV protons at LANL and CERN respectively. LYSO and BaF_2 show good radiation hardness.

LYSO crystals from different vendors show consistent damage: RIAC @ 430 nm = 1.3×10^{-14} Fp for protons of 800 MeV and 24 GeV. It is chosen to construct CMS BTL for the HL-LHC.

 BaF_2 show similar radiation hardness to LYSO at high fluence. Works are needed for further understanding BaF_2 : Y crystals.

Investigations will continue to compare damage in various inorganic crystal scintillators induced by ionization dose, protons and neutrons.

Acknowledgements

Drs. David Bailleux and Federico Ravotti helped proton irradiation at the CERN IRRAD facility.

This work was supported in part by the US Department of Energy Grants DE-SC0011925 and DE-AC52-06NA25396.