

Construction Readiness Review for CsI and SiPMs CsI Radiation Hardness and Radiation Induce Noise

Ren-Yuan Zhu California Institute of Technology June 19, 2017

Csl Radiation Related Specifications

Radiation Hardness Tested for Six Crystals

Radiation Induced Noise for 72 Crystals

In order to match the calorimeter energy (5%), position (1 cm) and timing (0.5 ns) resolution requirements a homogeneous calorimeter is the solution with a crystal that should have the following characteristics:

- High light output (LO) > 100 p.e./MeV by PMT.
- Good light response uniformity (LRU): < 10%.
- Fast signal with small slow: $\tau < 40$ ns, F/T > 75%.
- Radiation hard with LO loss < 40% for:
 - Ionization dose: 100 krad @ 10 krad/year; and
 - Neutrons: 10¹² n/cm² @ 3 x 10¹¹ n/cm²/year.
- Small radiation induced readout noise: < 0.6 MeV.

Csl Specification

Specifications are defined according to samples characterized:
Kharkov (Ukraine), Opto Materials (Italy) and SICCAS (China);

- \Box Crystal lateral dimension: $\pm 100 \mu$, length: $\pm 100 \mu$.
- Scintillation properties measured by a bi-alkali PMT with air gap coupled to the crystal wrapped with two layers of Tyvek paper:
 - □ Light output (LO): > **100 p.e./MeV** with 200 ns integration gate, will be defined as XX% of a candle crystal provided;
 - □ FWHM Energy resolution: < 45% for Na-22 peak;
 - □ Fast (200 ns)/Total (3000 ns) Ratio: > 75%;
 - □ Light response uniformity (LRU): < 10%.
- Radiation Hardness:
 - □ Normalized LO after 10/100 krad > 85/60%.
- □ Radiation Induced Noise (RIN) @1.8 rad/h: < 0.6 MeV.

36 CsI Crystals from Three Vendors

Initial Performance of Six Csl Crystals

Crystal ID	Batch Number	Coupling end	EWLT (%)	F/T (%)-1st	F/T (%)-2 rd	LRU (%)-1st	LRU (%)-2 rd
C0015	Amcrys-007	a	30.6	68.2	69.0	1.65	0.98
C0030	Amcrys-001	а	30.3	76.6	77.0	2.40	1.49
C0045	SG-A11827	a	22.9	98.9	98.7	0.92	0.92
C0060	SG-A11804	a	20.9	98.3	97.3	1.96	1.08
C0070	SIC-2016 A20	a	41.1	93.0	92.6	1.39	2.04
C0071	SIC-2016 A23	a	23.8	97.1	95.8	5.63	5.61

5

Longitudinal Transmittance

While initial longitudinal transmittance spectra (LT) are surface dependent, variations of the LT spectrum and the numerical values of emission weighted LT may be used to represent CsI radiation damage

6

Light Output & Response Uniformity

7

Radiation Damage Test Results

Crystal ID	Batch Number	Dose (krad)	EWLT (%)	Normalized EWLT (%)	L.O. (p.e./MeV)	Normalized L.O. (%)	E.R. (%)	F/T (%)	LRU (%)	δ (%)
	A	0	30.6	100	115	100	38	69.0	0.98	0.2
C0015	Amcrys-	10	28.4	92.8	113	98.1	38	70.6	1.83	-0.6
	007	100	28.3	92.5	104	90.2	39	73.2	1.75	-1.1
	A	0	30.3	100	107	100	40	77.0	1.49	0.2
C0030	Amcrys-	10	28.7	94.7	105	98.4	39	78.4	1.78	-1.2
	001	100	27.8	91.7	84	79.7	41	80.5	2.21	-2.0
C0045 S0	CC.	0	22.9	100	140	100	34	98.7	0.92	-0.1
	SG- A11827	10	19.4	84.7	114	81.2	38	98.2	1.31	-1.5
		100	16.0	69.9	98	69.6	41	100.0	1.59	-1.9
	CC.	0	20.9	100	135	100	34	97.3	1.08	-2.2
C0060	SG- A 11804	10	17.8	85.2	116	85.7	38	97.8	2.06	-4.2
	11100-	100	14.0	67.0	100	73.8	41	99.9	2.56	-5.1
	SIC 2016	0	41.1	100	151	100	35	92.6	2.04	3.9
C0070	$\Delta 20$	10	33.9	82.5	135	89.3	37	90.0	1.62	1.0
	A20	100	28.8	70.1	116	77.1	40	91.4	2.85	-4.4
	QIC 2016	0	23.8	100	180	100	33	95.8	5.61	-11.8
C0071	Δ23	10	20.2	84.9	158	87.5	37	98.4	6.32	-13.0
	A23	100	17.4	73.1	126	69.9	42	98.3	7.80	-16.2

Csl Light Output

Most CsI with LO > 100 p.e./MeV after 100 krad All satisfy radiation spec, except S-G 45 failed 10k

6/19/2017

9

Light Output Degradation by Vendors

All satisfy radiation spec except S-G 45 after 10 krad Rank: Kharkov, SIC and Saint-Gobain

EWLT Loss & Correlation with Light Output Loss

Summary: Radiation Induced Light Output Loss

- Gamma-ray induced radiation damages in both transmittance and light output are measured after 10 and 100 krad for six Mu2e preproduction CsI crystals.
- All crystals meet the Mu2e radiation damage specifications, except one Saint-Gobain sample (#45) which does not meet damage spec after 10 krad but meets that after 100 krad.
- Most crystals have light output larger than 100 p.e./MeV after 100 krad, promising a robust CsI calorimeter.
- Good correlation observed between variations of longitudinal transmittance and light output indicates that light monitoring is useful for crystal calibration.

QC on Csl Radiation Hardness

- Crystal vendors do not have a capability to test radiation hardness, so this will be our responsibility
- Crystals are grown in ingots, either a large size ingot or multiple small ones in each growth. We plan to test small samples, e.g. φ1" x 1", cut from ingots from each growth for radiation damage QC.
- Crystals are delivered in batches. We plan to measure two randomly selected samples in each batch for radiation damage QC.
- Prompt feedback to, and communications with, vendors are important for QC on radiation hardness for mass produced CsI crystals.

RIN Specification

Specifications are defined according to samples characterized:
Kharkov (Ukraine), Opto Materials (Italy) and SICCAS (China);

- \Box Crystal lateral dimension: $\pm 100 \mu$, length: $\pm 100 \mu$.
- Scintillation properties measured by a bi-alkali PMT with air gap coupled to the crystal wrapped with two layers of Tyvek paper:
 - Light output (LO): > **100 p.e./MeV** with 200 ns integration gate, will be defined as XX% of a candle crystal provided;
 - □ FWHM Energy resolution: < 45% for Na-22 peak;
 - □ Fast (200 ns)/Total (3000 ns) Ratio: > 75%;
 - □ Light response uniformity (LRU): < 10%.
- Radiation Hardness:
 - □ Normalized LO after 10/100 krad > 85/60%.

□ Radiation Induced Noise (RIN) @1.8 rad/h: < 0.6 MeV.

Radiation Induced Photocurrent

F is radiation induced photoelectron numbers per second, determined by the measured anode current in the PMT @ 2rad/h

(MeV) 🔁 Fermilab 6/19/2017

F

Photocurrent History

Crystals with the highest and the lowest current

AMCRYS (Measured at Caltech)

R2059 PMT @-700 V (Gain 263) with air gap to CsI crystals with Tyvek @ 2 rad/h and 200 ns

Crystal ID	Batch Number	Coupl ing end	L.O. (p.e./MeV)	Dark cur. before irrad. (nA)	Photo cur. @ 2 rad/h (nA)	F (p.e./s/rad/hr)	σ (MeV)
C0013	011	a	148	0.070	1974	2.35×10 ¹⁰	0.621
C0015	007	a	113	0.069	1913	2.27×10^{10}	0.801
C0016	013	b	134	0.069	1938	2.30×10 ¹⁰	0.679
C0019	015	a	125	0.068	1947	2.31×10 ¹⁰	0.730
C0023	02 4	a	117	0.067	1945	2.31×10 ¹⁰	0.780
C0025	022	b	145	0.063	1764	2.10×10^{10}	0.599
C0026	020	b	132	0.037	936	1.11×10^{10}	0.479
C0027	006	b	139	0.066	1895	2.25×10^{10}	0.648
C0030	001	a	105	0.063	1767	2.10×10^{10}	0.828
C0032	004	b	122	0.037	923	1.10×10^{10}	0.515
C0034	012	a	127	0.068	1913	2.27×10^{10}	0.712
C0036	019	b	134	0.027	526	6.24×10 ⁹	0.354
	Average		128	0.059	1620	1.92	0.645
	RMS		9.6%	25.3%	30.2%	30.2%	0.136

AMCRYS (Measured at LNF)

Crystal	LY (N _{pe} /MeV)	I (A)	Mu2e flux (rad/h)	F (N _{pe} /s/dose)	N _{pe} noise (200 ns)	RIN (keV)
C0014	138.53	3.09E-05	1.8	2.54E+10	9.14E+03	0.690
C0017	135.91	2.96E-05	1.8	2.44E+10	8.77E+03	0.689
C0018	141.06	3.11E-05	1.8	2.56E+10	9.20E+03	0.680
C0020	131.46	2.97E-05	1.8	2.44E+10	8.79E+03	0.713
C0021	135.30	3.08E-05	1.8	2.53E+10	9.11E+03	0.705
C0022	159.07	3.07E-05	1.8	2.52E+10	9.07E+03	0.599
C0024	152.79	1.80E-05	1.8	1.48E+10	5.32E+03	0.477
C0028	137.97	3.04E-05	1.8	2.50E+10	8.98E+03	0.687
C0029	116.33	7.22E-06	1.8	5.93E+09	2.14E+03	0.397
C0031	126.84	1.35E-05	1.8	1.11E+10	3.99E+03	0.498
C0033	162.04	2.87E-05	1.8	2.36E+10	8.49E+03	0.569
C0035	125.36	1.33E-05	1.8	1.09E+10	3.93E+03	0.500
						🞝 Fermil

Saint-Gobain (Measured at Caltech)

R2059 PMT @-700 V (Gain 263) with air gap to CsI crystals with Tyvek @ 2 rad/h and 200 ns

Crystal ID	Batch Number	Coupl ing end	L.O. (p.e./MeV)	Dark cur. before irrad. (nA)	Photo cur. @ 2 rad/h (nA)	F (p.e./s/rad/hr)	σ (MeV)
C0045	A11827	a	141	0.016	166	1.97×10^{9}	0.189
C0046	A11825	b	142	0.015	165	1.97×10^{9}	0.187
C0048	A11823	b	135	0.015	163	1.94×10^{9}	0.196
C0049	A11819	b	142	0.017	165	1.96×10^{9}	0.187
C0051	A11826	a	138	0.015	157	1.86×10^{9}	0.188
C0057	A11812	a	137	0.015	164	1.95×10^{9}	0.194
C0058	A11805	b	134	0.016	157	1.87×10^{9}	0.194
C0060	A11804	a	136	0.016	166	1.97×10^{9}	0.196
C0062	A11811	b	138	0.015	165	1.96×10 ⁹	0.192
C0063	A11807	a	136	0.013	162	1.92×10^{9}	0.193
C0065	A11815	a	134	0.027	160	1.90×10^{9}	0.195
C0066	A11808	a	136	0.017	160	1.90×10^{9}	0.192
	Average		137	0.016	162	1.93	0.192
	RMS		2.1%	20.0%	2.0%	2.0%	0.003

Saint-Gobain (Measured at LNF)

Crystal	LY (N _{pe} /MeV)	I (A)	Mu2e flux (rad/h)	F (N _{pe} /s/dose)	N _{pe} noise (200 ns)	RIN (keV)
C0044	139.33	3.14E-06	1.8	2.58E+09	927.9130	0.219
C0047	146.83	3.08E-06	1.8	2.53E+09	910.6729	0.206
C0050	145.10	3.23E-06	1.8	2.65E+09	954.0245	0.213
C0052	149.29	3.36E-06	1.8	2.76E+09	994.6348	0.211
C0053	131.15	2.98E-06	1.8	2.45E+09	880.4687	0.226
C0054	147.13	3.43E-06	1.8	2.82E+09	1014.5097	0.216
C0055	158.96	3.44E-06	1.8	2.83E+09	1018.0346	0.201
C0056	148.97	3.22E-06	1.8	2.65E+09	953.4123	0.207
C0059	158.77	3.63E-06	1.8	2.98E+09	1073.3537	0.206
C0061	140.55	3.02E-06	1.8	2.48E+09	892.8857	0.213
C0064	139.52	3.18E-06	1.8	2.61E+09	940.1555	0.220
C0067	149.25	3.36E-06	1.8	2.76E+09	993.4844	0.211

SICCAS (Measured at Caltech)

R2059 PMT @-700 V (Gain 263) with air gap to CsI crystals with Tyvek @ 2 rad/h and 200 ns

Crystal ID	Batch Number	Coupl ing end	L.O. (p.e./MeV)	Dark cur. before irrad. (nA)	Photo cur. @ 2 rad/h (nA)	F (p.e./s/rad/hr)	σ (MeV)
C0037	2016 A13	a	150	0.019	233	2.77×10^{9}	0.211
C0038	2016 A14	b	154	0.018	239	2.85×10 ⁹	0.208
C0039	2016 A15	b	153	0.018	239	2.84×10^{9}	0.209
C0040	2016 A16	a	152	0.019	234	2.78×10^{9}	0.208
C0041	2016 A17	a	163	0.022	241	2.87×10^{9}	0.197
C0042	2016 A18	b	154	0.017	237	2.82×10^{9}	0.207
C0043	2016 A19	a	136	0.024	454	5.40×10^9	0.324
C0068	2016 A24	b	172	0.020	295	3.51×10 ⁹	0.207
C0070	2016 A20	a	153	0.017	229	2.72×10^{9}	0.205
C0071	2016 A23	a	183	0.025	417	4.95×10 ⁹	0.231
C0072	2016 A22	a	174	0.018	245	2.92×10 ⁹	0.186
C0073	2016 A21	a	176	0.023	257	3.05×10 ⁹	0.188
	Average		160	0.020	277	3.29	0.215
	RMS		8.2%	13.1%	26.5%	26.5%	0.035

SICCAS (Measured at LNF)

Crystal	LY (N _{pe} /MeV)	I (A)	Mu2e flux (rad/h)	F (N _{pe} /s/dose)	N _{pe} noise (200 ns)	RIN (keV)
C0001	163.2	5.24E-06	1.8	4.30E+09	1.55E+03	0.241
C0002	145.9	4.63E-06	1.8	3.81E+09	1.37E+03	0.254
C0003	149.5	6.72E-06	1.8	5.52E+09	1.99E+03	0.298
C0004	158.3	4.38E-06	1.8	3.60E+09	1.29E+03	0.227
C0005	163.2	5.27E-06	1.8	4.33E+09	1.56E+03	0.242
C0006	157.8	4.50E-06	1.8	3.70E+09	1.33E+03	0.231
C0007	156.3	4.60E-06	1.8	3.78E+09	1.36E+03	0.236
C0008	143.9	4.69E-06	1.8	3.85E+09	1.39E+03	0.259
C0009	160.0	5.02E-06	1.8	4.12E+09	1.48E+03	0.241
C0010	140.3	3.62E-06	1.8	2.97E+09	1.07E+03	0.233
C0011	148.1	1.07E-05	1.8	8.77E+09	3.16E+03	0.380
C0012	143.5	1.44E-05	1.8	8.58E+09	3.09E+03	0.387

RIN by Vendors & Correlation Between Currents

Rank of RIN: SG, SIC, AMCRYS; Highly correlated currents

Correlations: Currents, RIN & F/T

Dark currents and RIN are highly correlated with F/T

24 Ren-Yuan Zhu @ Calorimeter CRR for CsI and SiPMs

Summary: Radiation Induced Noise

- Radiation induced readout noise are measured for all 72 preproduction CsI crystals. All crystals from Saint-Gobain and SICCAS meet the Mu2e spec. About half crystals from AMCRYS do not.
- Excellent correlations between the dark current, the radiation induced current, the radiation induced readout noise and the F/T ratio are confirmed. Eliminating slow component in crystals will reduce RIN.
- QC on RIN: measurement will be carried out for each CsI crystal.

Conclusion

- A total of 72 preproduction crystals have been procured from three vendors: AMCRYS, SICCAS and Saint-Gobain, and have been evaluated at Caltech and LNF.
- All six CsI crystals tested satisfy Mu2e radiation hardness spec, except one Saint-Gobain sample (#45) which does not meet damage spec after 10 krad but meets that after 100 krad. QC on radiation hardness will be carried out for selected samples in each delivery batch.
- Radiation induced readout noise are measured for 72 Csl crystals. All crystals from Saint-Gobain and SICCAS meet the Mu2e spec. About half crystals from AMCRYS do not. QC on RIN will be enforced for every Csl crystal delivered.
- Neutron induced radiation damage and readout noise are much smaller that that from ionization dose.

🔁 Fermilab

Neutrons Induced Damage

Neutron Irradiation at FNG

- Neutrons at FNG, ENEA \geq
- Up to 9 x 10¹¹ n/cm²
- No large variation in LY

CsI: OPTO MATERIALS

1.2

1.15

1.1

1.05

0.95

0.9

0.85

0.8는

2

4

LY / LY(10cm)

SICCAS deterioration in LRU

OPTOM Cs

Before

After 5x10¹¹ n/cm²

After 3x10¹¹ n/cm²

8

10

12

14

16

6

Neutron Induced Photo-Current

Neutron flux from four Cf-252 sources is about 4E4/cm2/s at the sample

Cf-252 has y-ray background, so result is a upper limit

Neutron Induced Photo-Current

Neutron induced photo-current is much less than that from gamma-rays

6/19/2017

🛟 Fermilab

Fast Neutron Induced Noise

Measured with a R2059 PMT @ -700 V (gain 317) for CsI samples with Tyvek wrapping and air gap coupling. Noise estimated for Mu2e: 200 ns gate and 1 x 10⁴ n/cm²/s

Sample	Dimensions (cm³)	Volume (cm ³)	LO of 200 ns Gate (p.e./MeV)	Dark Current* (nA)	Photo Current* (nA)	F* (p.e./n/cm²)	σ* (MeV)	Comments
Kharkov 3	2.9x2.9x23	193	93	1.1	650	2.76E+05	2.5E-01	After 1E11 n/cm ²
SIC 2014	2.5x2.5x20	125	140	0.31	165	8.68E+04	9.4E-02	

* Data normalized to the crystal volume of $2.9 \times 2.9 \times 23$ cm³

Neutron induced noise is negligible as compared to ionization dose

Thermal Neutron Induced Noise @ LNF

Neutrons from the HOTNES facility at ENEA Frascati

Crystal	LY (N _{pe} /MeV)	l (μΑ)	Mu2e flux (n/cm²/s)	F (N _{pe} /s/dose)	N _{pe} noise (200 ns)	RIN (keV)
ISMA 02	103	7,16	1×10 ⁴	3,02 × 10 ⁴	60,3	75,4
ISMA 12	103	4,61	1×10 ⁴	1,94 × 10 ⁴	38,9	60,5
ISMA 20	103	5,35	1×10 ⁴	2,25 × 10 ⁴	45,1	65,2
ISMA 21	103	7,28	1×10 ⁴	3,07 × 10 ⁴	61,4	76,0
SICCAS 1	129	6,83	1×10 ⁴	2,88 × 10 ⁴	57,5	58,6
SICCAS 2	126	7,58	1×10 ⁴	3,19 × 10 ⁴	63,8	63,4
SICCAS 4	136	10,1	1×10 ⁴	4,27 × 10 ⁴	85,5	67,8
OPTOM 2	93	7,65	1×10 ⁴	3,22 × 10 ⁴	64,4	86,3

Thermal neutron induced noise is lower than that from fast neutrons

