

Inorganic Scintillators for Future HEP Experiments

Chen Hu, Fan Yang, Liyuan Zhang and Ren-Yuan Zhu

California Institute of Technology

October 9, 2016

CPAD Instrumentation Frontier Meeting 2016, Caltech, Oct. 8-10

Challenges for Inorganic Scintillators

- Fast and radiation hard scintillators, such as LYSO:Ce, are needed at the energy frontier, e.g. CMS ECAL Endcap (η=3) at HL-LHC with 3000 fb⁻¹:
 - Absorbed dose: up to 60 Mrad (dose rate 5 krad/hr),
 - Charged hadron fluence: up to 6×10¹⁴ p/cm²,
 - Fast neutron fluence: up to 3×10¹⁵ n/cm².
- Ultra-fast scintillators, such as BaF₂ with sub-ns decay time and suppressed slow scintillation component, are needed to face the challenge of unprecedented event rate expected at the intensity frontier, e.g. Mu2e-II.
- Cost-effective scintillators are needed for a homogeneous hadronic calorimeter (HHCAL) detector concept to achieve excellent jet mass resolution at future high energy lepton colliders, such as ILC, CLIC, FCC and CEPC.

Bright, Fast Scintillators: LSO/LYSO

Crystal	Nal(TI)	CsI(TI)	Csl	BaF ₂	BGO	LYSO(Ce)) PWO	PbF ₂
Density (g/cm ³)	3.67	4.51	4.51	4.89	7.13	7.40	8.3	7.77
Melting Point (°C)	651	621	621	1280	1050	2050	1123	824
Radiation Length (cm)	2.59	1.86	1.86	2.03	1.12	1.14	0.89	0.93
Molière Radius (cm)	4.13	3.57	3.57	3.10	2.23	2.07	2.00	2.21
Interaction Length (cm)	42.9	39.3	39.3	30.7	22.8	20.9	20.7	21.0
Refractive Index ^a	1.85	1.79	1.95	1.50	2.15	1.82	2.20	1.82
Hygroscopicity	Yes	Slight	Slight	No	No	No	No	No
Luminescence ^b (nm) (at peak)	410	550	310	300 220	480	402	425 420	?
Decay Time ^b (ns)	245	1220	26	650 0.9	300	40	30 10	?
Light Yield ^{b,c} (%)	100	165	4.7	36 4.1	21	85	0.3 0.1	?
d(LY)/dT ^ь (%/ ºC)	-0.2	0.4	-1.4	-1.9 0.1	-0.9	-0.2	-2.5	?
Experiment	Crystal Ball	BaBar BELLE BES III	KTeV S.BELLE Mu2e	(GEM) TAPS Mu2e-II?	L3 BELLE HHCAL?	COMET (CMS, Mu2e SuperB)	e, ALICE PANDA	A4 g-2 HHCAL?

a. at peak of emission; b. up/low row: slow/fast component; c. QE of readout device taken out.

October 9, 2016

A HASTITULE

TECHNOL

Gamma Irradiations

- Crystal samples of about 20 cm long were irradiated step by step at Caltech, JPL and Sandia facilities by ⁶⁰Co and ¹³⁷Cs sources up to 340 Mrad with a dose rate up to 1 Mrad/h.
- Longitudinal Transmittance (LT) and Light Output (LO) were measured at room temperature before and after each irradiation step within 1 hr.

20 cm Long LYSO: Normalized EWLT and LO vs. Dose and LO vs. EWLT

- LYSO/LSO/LFS were found the hardest ones against y irradiation.
- The best sample: 58% light output after 340 Mrad.
- Good correlation between LO and EWLT: LO loss is caused by absorption.

All Long Crystals: LO Loss

Ignoring dose rate dependence, normalized light output shown as a function of the integrated dose.

LYSO crystals show the best radiation hardness up to 340 Mrad

Particle Energy Spectra at HL-LHC

FLUKA simulations: neutrons and charged hadrons are peaked at MeV and several hundreds MeV respectively. Neutron energy of 2.5 MeV from Cf-252 source and proton energy of 800 MeV at LANL are ideal for such investigation

Report in the HEP CPAD Meeting 2016 at Caltech by Liyuan Zhang, Caltech

Proton/Neutron Irradiation at LANL

800 MeV p-Irradiation at LANL

October 9, 2016

The 2015 p-Irradiation Setup

LT (300-800 nm) of long crystals was measured before and after each irradiation step by a Xenon lamp and fiber based spectrophotometer.
 A LYSO-W-Capillary Shashlik cell was monitored before and after each inclusion and the state is a state in a state in the state is a state in the state in the state is a state in the state in the state is a state in the state in the state is a state in the state in the state is a state in the state in the state is a state in the state in the state is a state in the state in the state is a state in the state in the state is a state in the state in the state is a state in the state in the state is a state in the state in the state is a state in the state in the state is a state in the state in the state is a state in the state in t

irradiation step by a 420 LED based monitoring system.

CERN 24 GeV Proton Irradiation with a beam FWHM of 12 mm

Thanks to David Bailleux and Federico Ravotti

- Four LYSO plates: 7.4×10¹³, 2x 2.4×10¹⁵ and 6.9×10¹⁵ p/cm² in 2014
- Ten LFS plates were irradiated as five pairs from 9.97 x 10¹³ up to 8.19 x 10¹⁵ p/cm² in 2015.
- Transmittance and light output were measured after cooled down.

UC Davis 67 MeV proton irradiation with a beam FWHM of 25 mm Thanks to Bob Hirosky and Mike Mulhearn

■ Five LYSO plates: 2x 1.2×10¹², 1.2×10¹³, 2.2×10¹³ and 9.5×10¹³ p/cm²

T and LO Losses after p-Irradiation

Channel Number

- Transmittance measured by a PerkinElmer Lambda 950 spectrophotometer with 0.15% precision or 3.5/m for radiation induced absorption (RIAC).
- LO measured with PMT via direct coupling or through 4 x Y11 WLS fibers to mitigate phosphorescence.
- No loss was observed up to 10¹⁴ p/cm² for 67 MeV and 24 GeV protons.

RIAC and LO after p-Irradiation

- Consistent RIAC at 430 nm is observed in LYSO and LFS plates irradiated by 24 GeV protons up to 8.19 x 10¹⁵p/cm²at CERN in 2014 and 2015.
- Damages by protons and gamma-rays are consistent in terms of LO vs. RIAC, indicating that LO loss is caused by absorption so can be monitored.
- Average light path length of 1.1 and 2.4 cm at 430 nm for direct and Y-11 readout.

Neutron Irradiation 2015 at LANL

A total of 18 LFS plates of 14×14×1.5 mm³ were divided into 3 groups and removed after 13.4, 54.5 and 118 days respectively.
 Samples were shipped back after cooling down and with light

output and transmittance measured at Caltech.

Particles / Dose	Group-1 (BOET 107-112) Fluence (cm ⁻²)	Group-2 (BOET 101-106) Fluence (cm ⁻²)	Group-3 (BOET 95-100) Fluence (cm ⁻²)
Thermal and Epithermal, Neutrons (0 <en 1="" <="" ev)<="" td=""><td>7.01E+14</td><td>3.16E+15</td><td>5.64E+15</td></en>	7.01E+14	3.16E+15	5.64E+15
Slow and Intermediate Neutrons (1 eV <en 1<br="" <="">MeV)</en>	2.56E+15	1.15E+16	2.05E+16
Fast Neutrons (En > 1 MeV)	2.24E+14	1.01E+15	1.80E+15
Protons (Ep>1 MeV)	5.31E+11	2.39E+12	4.27E+12
Protons Ionization Dose (rad)	1.39E+04	6.25E+04	1.12E+05
Photons (Eg>150 KeV)	6.71E+14	3.02E+15	5.39E+15
Photons Ionization Dose (rad) in Air	2.40E+07	1.08E+08	1.93E+08

October 9, 2016

LO and EWLT after n-Irradiation

- Light output was measured by UV LED excitation and Y-11 WLS fibers, see slide 12.
- Degradations of 3%,13% and 24% is observed for Group-1, 2 and 3 respectively.
- LO loss vs. EWLT loss is consistent with that of gamma and proton irradiated ones.
- Pb shielding is implemented in 2016 irradiation to evaluate gamma contribution.

Inorganic Ceramic Scintillators

	LYSO:Ce	LSO:Ce, Ca ^a	LuAG:Ce ^b	LuAG:Pr ^c	GGAG: Ce ^d	GLuGAG: Ce ^g	GYGAG: Ce ^h	SrHfO ₃ : Ce ⁱ	BaHfO ₃ : Ce ⁱ	CeBr ₃ ^k	LaBr ₃ :Ce ^k
Density (g/cm ³)	7.4	7.4	6.76	6.76	6.5	6.80	5.80	7.56	8.5	5.23	5.29
Melting points (°C)	2050	2050	2060	2060	1850°	>1900 ^e	1850 ^e	2730	2620	722	783
X ₀ (cm)	1.14	1.14	1.45	1.45	1.63	1.38	2.11	1.17	0.98	1.96	1.88
R _M (cm)	2.07	2.07	2.15	2.15	2.20	1.57	2.43	2.03	1.87	2.97	2.85
λ _ι (cm)	20.9	20.9	20.6	20.6	21.5	20.8	22.4	20.6	19.4	31.5	30.4
Z _{eff}	64.8	64.8	60.3	60.3	51.8	55.2	45.4	60.9	62.9	45.6	45.6
dE/dX	9.55	9.55	9.22	9.22	8.96	9.28	8.32	9.80	10.7	6.65	6.90
λ _{peak} (nm)	420	420	520	310	540	550	560	410	400	371	356
Refractive Index	1.82	1.82	1.84	1.84	1.92 ^f	1.92 ^f	1.92 ^f	2.0	2.1	1.9	1.9
Normalized Light Yield	100	116	83	73	115	161	167	133	133	99	153
Total Light yield (ph/MeV)ª	30,000	34,800	25,000	22,000	34400	48,200	50,000	5,000 ^j	5,000 ^j	30,000	46,000
Decay time (ns) ^a	40	31	46	20	53	84 148	100	42	25	17	20
Light Yield in 1 st ns (photons/MeV)	740	950	540	1,100	640	570	500	120	200	1,700	2,200
Issues					high thermal neutron x-section			incongruent		hygroscopic	

^a Spurrier, et al., IEEE T. Nucl. Sci. 2008,55 (3): 1178-1182

^b Liu, et al., Adv. Opt. Mater., 4: 731–739.

doi: 10.1002/adom.201500691

^c Yanagida, et al., IEEE T. Nucl. Sci. 2012, 59(5): 2146

^d Luo, et al., Ceram. Int. 2016, 41(1): 873

^e The melting point of these materials various with different

composition from 1800 to 1980 °C. The data is based on reported

Octable \$9, 2016

Report in the HEP CPAD Meeting 2016 at Caltech by Liyuan Zhang, Caltech

^f Kuwano, et al., *J. Cryst. Growth.* 1988, 92: 17

^g Wu, et al., *NIMA* 2015, 780: 45

^h Cherepy, et al., *IEEE T. Nucl. Sci.* 2013, 60(3): 2330

ⁱvan Loef, et al., *IEEE T. Nucl. Sci.* 2007, 54(3):741

^j Based on ¹³⁷Cs gamma-ray excitation (shaping time of 4 μs) light yield result in ref. i ^k Data based on single crystals

LuAG:Ce Samples from SIC

Sample ID	Dimension (mm)	Polishing
LuAG S1	25×25×0.4	Two surfaces
LuAG S2	25×25×0.4	Two surfaces
LuAG RI	Ф15×0.2	Two surfaces

Experiments

 Properties measured at room temperature: Transmittance, Photo-luminescence, Light Output, Decay Time and Radiation Damage

Excellent Radiation Hardness

No damage observed in both transmittance and light output after 220 Mrad gamma radiation and 2.9×10^{14} p/cm² of 800 MeV.

BaF₂: a Promising Scintillator at the Intensity Frontier

- Good transmittance at both 220 and 300 nm in commercial BaF₂ crystals.
- More than 100 p.e./MeV in the fast component, and about a factor of five in the slow component with 600 ns decay time.
- R&Ds with RE doping in BaF₂ are ongoing to suppress the slow component.

La/Ce Co-doping at BGRI

- The La/Ce co-doped sample of BGRI show consistent absorption band of Ce3+ at the slow component.
- The overall F/S ratio is increased from 1:5 to 1:2 in 20 cm long samples with good light response uniformity.
- Their radiation hardness needs further investigation.

Yttrium doping at SIC

- Y-doped BaF₂ crystals of 3 x 3 x 2 cm³ with slow suppression have been successfully grown in SIC and evaluated in Caltech crystal lab.
- F/S ratio of these crystals is increased to 129-146%.
- Y-doped BaF₂ crystals up to 20 cm in length have been successfully grown. Its light output, EWLT, F/S ratio and LRU are to be improved.

Gamma-Ray Induced Damage in BaF₂

Consistent y induced damage in 25 cm BaF₂ crystals from three vendors.
 40%/45% LO of the fast/slow component in 25 cm crystals after 120 Mrad.
 Proton and neutron irradiation tests at LANL are underway.

Homogeneous Hadronic Calorimeter

A Fermilab team (A. Para et al.) proposed a total absorption homogeneous hadronic calorimeter (HHCAL) detector concept to achieve good jet mass resolution by measuring both Cherenkov and Scintillation light.

ILCWS-08, Chicago: a HHCAL cell with pointing geometry

Requirements for the Materials:

- Cost-effective material: for 70~100 m³
- Short nuclear interaction length: ~ 20 cm.
- Good UV transmittance: UV cut-off < 350 nm, for readout of Cherenkov light.
- Some scintillation light, not necessary bright and fast.
- Discrimination between Cherenkov and scintillation lights, in spectral or temporal domain.

Candidate Crystals for HHCAL

Cost-effective, UV transparent crystals with both scintillation and Cherenkov light

Parameters	Bi ₄ Ge ₃ O ₁₂ (BGO)	PbWO ₄ (PWO)	PbF ₂	PbClF	Bi ₄ Si ₃ O ₁₂ (BSO)
ρ (g/cm³)	7.13	8.29	7.77	7.11	6.8
λ _ι (cm)	22.8	20.7	21.0	24.3	23.1
n @ λ _{max}	2.15	2.20	1.82	2.15	2.06
τ _{decay} (ns)	300	30/10	?	30	100
λ _{max} (nm)	480	425/420	?	420	470
Cut-off λ (nm)	310	350	250	280	300
Light Output (%)	100	1.4/0.37	?	17	20
Melting point (°C)	1050	1123	842	608	1030
Raw Material Cost (%)	100	49	29	29	47

IEEE Trans. Nucl. Sci. 59 (2012) 2229-2236
IEEE Trans. Nucl. Sci. 61 (2014) 489-494
J. Phys. Conf. Ser. 587 (2015)

Nano particles made of wideband semiconductors with selfabsorption, such as ZnO, Pbl₂, GaAs/InAs etc., may provide alternative composite scintillators featured with tunable emission. Main issues are effective hosts which are transparent for Cherenkov the scintillation light.

Summary

- Bright, fast and radiation hard LYSO crystals offer a robust crystal calorimeter for future HEP experiment at the energy frontier. Ongoing is irradiation by protons and neutrons at LANL in 2016.
- Novel inorganic scintillating ceramics, e.g. LuAG:Ce and LuAG:Pr, may offer a cost-effective alternative for LSO/LYSO.
- Fast and radiation hard BaF₂ crystals offer a very fast crystal calorimeter for future HEP experiment at the intensity frontier. See David's talk. Slow scintillation suppression by RE doping is underway.
- Cost effective crystals, glasses and ceramics would provide a foundation for a homogeneous hadron calorimeter for future lepton colliders.

A Comparison of damages in PWO caused by y-rays and Neutrons up to 10¹⁹ n/cm²

[50] R. Chipaux et al., Behaviour of PWO scintillators after high fluence neutron irradiation, in Proc. 8th Int. Conference on Inorganic Scintillators, SCINT2005, A. Getkin and B. Grinyov eds, Alushta, Crimea, Ukraine, September 19–23 (2005), pp. 369–371

August 30, 2016

450

10 400

RIAC@424 nm: 9.65±0.18 m⁻¹

550

600

Wavelength (nm)

650

700

750

800

500

No Neutron Damage in PWO

5.2 Radiation damage effects under neutron irradiation

In view of the intense neutron flux expected in CMS (see section 2) the effects on lead tungstate of neutron exposure were studied in nuclear reactors [47, 48]. The neutron fluxes and energies in these exposures were comparable to those expected in CMS. However, in reactors there is a strong associated gamma dose. The effect arising from neutrons was estimated by comparing the reactor results with results obtained from pure gamma irradiations. This indicated that there was no specific effect due to neutrons on the optical and scintillating properties of lead tungstate, at least up to fluences of 10^{14} cm⁻². This was confirmed by later independent studies [49]. It is also to be mentioned that recent tests performed at a very high fluence, of the order of 10^{19} to 10^{20} n·cm⁻² and 330 MGy (i.e. well above the level that will be ever achieved in any physics experiment) revealed the robustness of lead tungstate crystals which were not destroyed nor locally vitrified, and remained scintillating after such heavy irradiation [50].

The CMS Electromagnetic Calorimeter Group, *Radiation hardness qualification of PbWO*₄ scintillation crystals for the CMS Electromagnetic Calorimeter, 2010 JINST 5 P03010