

Application of LYSO Crystals in HEP Experiments

Ren-Yuan Zhu

California Institute of Technology

October 12, 2021

Presentation in the PIENUX Group Meeting, University of Washington

History of LYSO:Ce Crystals

- LSO:Ce was discovered by Dr. Charles Melcher in Schlumberger-Doll Research and was patented by Schlumberger-Doll Research in 1990. Chuck later joined CTI and is now a Research Professor & Director-Scintillation Materials Research Center at the University of Tennessee. The LSO:Ce patent was expired in 2008.
- LYSO:Ce was discovered by Dr. Bruce Chai [1] in University of Central Florida who holds the LYSO:Ce patent since 2003. Bruce started Crystal Photonics Inc. which is now the main producer of LYSO:Ce crystals for the PET industry. The LYSO:Ce patent was expired in 2020.
- There are additional patents for Ca²⁺ co-doping to make LSO:Ce/LYSO:Ce faster, and thermal annealing in oxygen atmosphere etc., which are expected to be expired soon.
- [1] <u>http://www.hep.caltech.edu/~zhu/papers/02 nim pwo y.pdf;</u> and

https://science.osti.gov/-/media/hep/pdf/files/Banner-PDFs/TTT-connections-May14.pdf?la=en&hash=209C9F2B483868A886421452993292D7EA76AE36

Crystals with Mass Production Capability

Crystal	Nal:Tl	CsI:Tl	Csl	BaF ₂	CeF ₃	PbF ₂	BGO	BSO	PbWO ₄	LYSO:Ce	AFO Glasses	Sapphire:Ti
Density (g/cm ³)	3.67	4.51	4.51	4.89	6.16	7.77	7.13	6.8	8.3	7.40	4.6	3.98
Melting points (°C)	651	621	621	1280	1460	824	1050	1030	1123	2050	١	2040
X ₀ (cm)	2.59	1.86	1.86	2.03	1.65	0.94	1.12	1.15	0.89	1.14	2.96	7.02
R _M (cm)	4.13	3.57	3.57	3.10	2.39	2.18	2.23	2.33	2.00	2.07	2.89	2.88
λ _ι (cm)	42.9	39.3	39.3	30.7	23.2	22.4	22.7	23.4	20.7	20.9	26.4	24.2
Z _{eff}	50.1	54.0	54.0	51.6	51.7	77.4	72.9	75.3	74.5	64.8	42.8	11.2
dE/dX (MeV/cm)	4.79	5.56	5.56	6.52	8.40	9.42	8.99	8.59	10.1	9.55	6.84	6.75
λ _{peak} ^a (nm)	410	560	420 310	300 220	340 300	١	480	470	425 420	420	365	750
Refractive Index^b	1.85	1.79	1.95	1.50	1.62	1.82	2.15	2.68	2.20	1.82	۸	1.76
Normalized Light Yield ^{a,c}	120	190	4.2 1.3	42 4.8	8.6	١	25	5	0.4 0.1	100	1.5	١
Total Light yield (ph/MeV)	35,000	58,000	1700	13,000	2,600	١	7,400	1,500	130	30,000	450	λ
Decay time ^a (ns)	245	1220	30 6	600 0.5	30	١	300	100	30 10	40	40	3200
Hygroscopic	Yes	Slight	Slight	No	No	No	No	No	No	No	No	No
Experiment	Crystal Ball	CLEO BaBar BELLE BES III	KTeV Mu2e S. BELLE	TAPS Mu2e-II	١	A4 g-2	L3 BELLE CalVision	١	CMS ALICE PrimEx Panda	COMET HERD CMS BTL RADICAL	HHCAL	HHCAL

Twelve Crystal Scintillators of 1.5 X₀

Excitation, Emission, Transmission

Black Dots: Theoretical limit of transmittance: NIM A333 (1993) 422

October 12, 2021

Cs-137 Pulse Hight Spectra

Gool FWHM energy resolution of 9%, corresponding to 3.8% in σ

Light Output and Decay Time

Light Output Temperature Dependence

Small temperature variation: -0.2%/°C

A LYSO Sample of 2.5 x 2.5 x 28 cm³

SIPAT-LYSO-L7: 2.5 x 2.5 x 28 cm, Nov, 2009

Radiation Hard against Ionization Dose

October 12, 2021

Self-Absorption and Cerium Segregation

Ray-Tracing Simulation

POLONON CONTRACTOR

Polished and Roughened Surfaces

The optical focusing, effect dominates non-uniformity: δ is about 13% for all polished surfaces. Roughened surface(s) can compensate the optical focusing effect. The best result is achieved by roughening only one side surface.

Distance from detector (cm)

October 12, 2021

Real Exercise: Roughening SIC-LYSO-L3

The smallest side surface of SIC-LYSO-L3 was roughened to Ra = 0.3 at SIC via a two step process

1st: lapped to Ra = 0.5 by using 11 μ m Al₂O₃ powder for 10 min with 2.5 kg weight 2nd: lapped to Ra = 0.3 by using 6.5 μ m SiC powder for 3 min with 1.5 kg weight

Light Response Uniformization

Ra = 0.3 uniformizes SIC-L3 to < 2%

October 12, 2021

SuperB Test Beam at BTF, Frascati

A LYSO matrix of 25 crystals was tested in May, 2011. Crystals were uniformized by black painting of 15 mm at the small end of the smallest side surface

Mu2e LYSO Beam Test

Current Lu₂O₃ price indicates that LYSO price is at a level of \$35/cc

Assuming Lu_2O_3 at \$400/kg and 33% yield the cost is about \$18/cc. Quotations received at \$22-25/cc.

Presentation by Ren-Yuan Zhu, Caltech, in the PIENUX Group meeting, at University of Washington

2020

Crystal Cost for CEPC (Mar 2019)

Cost-effectiveness scaled with X₀: PWO, BGO, CsI, BSO, BaF₂:Y, LYSO

ltem	Size (R _M xR _M x25 X ₀)	1 m ³	10 m ³	100 m ³	Scaled to X ₀
BGO	22.3×22.3×280 mm	\$8/cc	\$7/cc	\$6/cc	1.23
BaF ₂ :Y	31.0×31.0×507.5 cm	\$12/cc	\$11/cc	\$10/cc	2.28
LYSO:Ce	20.7x20.7x285 mm	\$36/cc	\$34/cc	\$32/cc	1.28
PWO	20x20x223 mm	\$9/cc	\$8/cc	\$7.5/cc	1.00
BSO	22x22x274 mm	\$8.5/cc	\$7.5/cc	\$7.0/cc	1.29
Csl	35.7x35.7x465 mm	\$4.6/cc	\$4.3/cc	\$4.0/cc	2.09

October 12, 2021

LYSO:Ce for CMS Barrel Timing Layer

MTD performance goal: 30-40 ps at the start degrading to < 60 ps at 3000 fb⁻¹ Barrel Timing Layer: arrays of LYSO crystal bars connected to SiPMs at both ends and readout by TOFHIR LYSO quality control: Low temperature performance, RIN:_y, RIN:n, TID, TF:p and TF:n BTL: LYSO bars + SiPM read-out CMS ► TK / ECAL interface ~ 45 mm thick $|\eta| < 1.45$ and $p_T > 0.7$ GeV ► Active area ~ 38 m² ; 332k channels ► Fluence at 3 ab⁻¹: 2×10¹⁴ n_{ea}/cm² ETL: Si with internal gain (LGAD) \triangleright On the HGC nose ~ 65 mm thick ▶ 1.6 < $|\eta|$ < 3.0 ► Active area ~ 14 m²; ~ 8.5M channels \blacktriangleright Fluence at 3 ab⁻¹: up to 2×10¹⁵ n_{ed}/cm² LYSO + SiPM with Thermal Electric Cooler (TEC) for CMS Barrel Timing Layer (BTL) in construction Mockup 01-0021 SiPM array prototypes from FBK SiPM arrays mockup for TECs testing

October 12, 2021

CMS MTD: Expected Radiation

- O F \/ 4 013/0 4

CMS BTL/EWEC: 4.6/66 Wirad, 2.5 \times 10 ⁻⁶ /2.1 \times 10 ⁻⁴ p/cm ² & 3.2 \times 10 ⁻⁷ /2.4 \times 10 ⁻⁶ n _{eq} /cm ²									
CMS MTD	η	n _{eq} (cm ⁻²)	n _{eq} Flux (cm ⁻² s ⁻¹)	Proton (cm ⁻²)	p Flux (cm ⁻² s ⁻¹)	Dose (Mrad)	Dose rate (rad/h)		
Barrel	0.00	2.5E+14	2.8E+06	2.2E+13	2.4E+05	2.7	108		
Barrel	1.15	2.7E+14	3.0E+06	2.4E+13	2.6E+05	3.8	150		
Barrel	1.45	2.9E+14	3.2E+06	2.5E+13	2.8E+05	4.8	192		
Endcap	1.60	2.3E+14	2.5E+06	2.0E+13	2.2E+05	2.9	114		
Endcap	2.00	4.5E+14	5.0E+06	3.9E+13	4.4E+05	7.5	300		
Endcap	2.50	1.1E+15	1.3E+07	9.9E+13	1.1E+06	26	1020		
Endcap	3.00	2.4E+15	2.7E+07	2.1E+14	2.3E+06	68	2700		

Much higher at FCC-hh: up to 0.1/500 Grad and 3x10¹⁶/5x10¹⁸ n_{eq}/cm² at EMEC/EMF M. Aleksa *et al.,* Calorimeters for the FCC-hh CERN-FCCPHYS-2019-0003, Dec 23, 2019

LYSO:Ce for CMS Barrel Timing Layer

CMS LYSO spec: RIAC < 3 m⁻¹ after 4.8 Mrad, 2.5 x 10^{13} p/cm² & 3.2 x 10^{14} n_{eg}/cm²

Damage induced by protons is an order of magnitude larger than that from neutrons Due to ionization energy loss in addition to displacement and nuclear breakup

October 12, 2021

2019 DOE Basic Research Needs Study

on HEP Instrumentation: Calorimetry

https://science.osti.gov/hep/Community-Resources/Reports

Priority Research Direction

PRD 1: Enhance calorimetry energy resolution for precision electroweak mass and missing-energy measurements

PRD 2: Advance calorimetry with spatial and timing resolution and radiation hardness to master high-rate environments

PRD 3: Develop ultrafast media to improve background rejection in calorimeters and improve particle identification

Fast/ultrafast, radiation hard and cost-effective inorganic scintillators needed to achieve energy, spatial and timing resolution for future HEP calorimetry 2021 HEP CPAD Meeting: https://indico.fnal.gov/event/46746/timetable/#all.detailed

LuAG:Ce Ceramics Radiation Hardness

LuAG:Ce ceramics show a factor of two better radiation hardness than LYSO crystals up to 6.7×10^{15} n_{eq}/cm² and 1.2×10^{15} p/cm², promising for FCC-hh Paper N18-05 in the 2020 NSS CR, DOI: 10.1109/NSS/MIC42677.2020.9507969

R&D on slow component suppression by Ca co-doping, and radiation hardness by $\gamma/p/n_c$

RADiation hard innovative **CAL**orimetry See R. Ruchti, in the CPAD meeting

> 16 LuAG:Ce ceramic fibers Laser Heated Pedestal Growth

11 Φ1x40 mm³ 3 Φ1x60 mm³ 2 Φ1x120 mm³ SIC LuAG:Ce Ceramic LHPG fiber

500

550

600

20

300

350

400

450

Wavelength (nm)

Presentation by Ren-Yuan Zhu, Caltech, in the PIENUX Group meeting, at University of Washington

LuAG:Ce fiber

Summary

- LYSO:Ce is a bright (200 times of PWO), fast (40 ns) and radiation hard crystal scintillator. The light output loss is at a level of 10% for 28 cm long crystal after 1 Mrad γ–ray irradiation, much better than all other crystals.
- The longitudinal light response non-uniformity issue caused by selfabsorption, cerium segregation and tapered geometry can be addressed by roughening crystal's side surface.
- LYSO:Ce is widely used in the medical industry. Existing mass production capability would help in cost control.
- LYSO is widely used in HEP experiments: COMET, HERD and CMS BTL. The proposed RADiCAL concept use LYSO:Ce plates and LuAG:Ce WLS for an ultra-compact, radiation hard and longitudinally segmented shashlik calorimeter for the HL-LHC and FCC-hh.

Acknowledgements: DOE HEP Award DE-SC0011925

The HERD LYSO Calorimeter

top tungsten + silicon strip charge detection cosmic ray(CR) composition y ray tracking side silicon strip LYSO calorimeter charge detection e/γ energy detection **CR** composition **CR nuclei energy detection** e/p separation

9261 LYSO crystals of 3 cm cube with WLF readout: 55 X_0 and 3 λ in Space

Good resolutions for γ/e energy, position and direction