

A Very Fast and Radiation Hard BaF₂ Calorimeter for Mu2e-II

Ren-Yuan Zhu

California Institute of Technology

December 8, 2017

Mu2e-II Workshop at ANL

Introduction

- Mu2e-I is building a pure CsI calorimeter, which has 30 ns fast scintillation and survives ionization dose up to 100 krad.
- A radiation level beyond 100 krad is expected by Mu2e-II, where CsI will be blackened and can not be cured.
- With sub-ns fast scintillation and excellent radiation hardness BaF₂ crystals promise a very fast and robust calorimeter for Mu2e-II.
- There are two effective approaches to handle the 600 ns slow scintillation in BaF₂: solar blind photodetector and/or selective doping. Recent progress in yttrium doped BaF₂ promise a ultrafast scintillator with sub-ns FWHM pulse width for HEP and GHz hard X-ray imaging.
- Mass production capability of BaF₂ exists in industry:
 - BGRI (China), Incrom (Russia) and SICCAS (China): tested;
 - Hellma (Germany): in contact

12/8/2017

Fast Inorganic Crystal Scintillators

	LSO/LYSO	GSO	YSO	Csl	BaF₂	CeF ₃	CeBr ₃	LaCl₃	LaBr₃	Plastic scintillator (BC 404) ^①
Density (g/cm ³)	7.4	6.71	4.44	4.51	4.89	6.16	5.23	3.86	5.29	1.03
Melting point (°C)	2050	1950	1980	621	1280	1460	722	858	783	70 [#]
Radiation Length (cm)	1.14	1.38	3.11	1.86	2.03	1.7	1.96	2.81	1.88	42.54
Molière Radius (cm)	2.07	2.23	2.93	3.57	3.1	2.41	2.97	3.71	2.85	9.59
Interaction Length (cm)	20.9	22.2	27.9	39.3	30.7	23.2	31.5	37.6	30.4	78.8
Z value	64.8	57.9	33.3	54	51.6	50.8	45.6	47.3	45.6	5.82
dE/dX (MeV/cm)	9.55	8.88	6.56	5.56	6 52	8.42	6.65	5.27	6.9	2.02
Emission Peak ^a (nm)	420	430	420	420 310	300 220	340 300	371	335	356	408
Refractive Index ^b	1.82	1.85	1.8	1.95	1.5	1.62	1.9	1.9	1.9	1.58
Relative Light Yield ^{a,c}	100	45	76	4.2 1.3	42 4.8	8.6	99	15 49	153	35
Decay Time ^a (ns)	40	73	60	30 6	650 0.9	30	17	570 24	20	1.8
d(LY)/dT ^d (%/°C)	-0.2	-0.4	-0.1	-1.4	-1.9 0.1	~0	-0.1	0.1	0.2	~0

a. Top line: slow component, bottom line: fast component.

b. At the wavelength of the emission maximum.

c. Relative light yield normalized to the light yield of LSO

d. At room temperature (20°C)

#. Softening point

1. http://www.detectors.sin-gobain.com/Plastic-Scintillator.aspx

http://pdg.lbl.gov/2008/AtomicNuclearProperties/HTML_PAGES/216.html

The sub-ns fast scintillation in BaF₂ promises a very fast crystal calorimeter to face the challenge of high event rate expected by future HEP experiments at the intensity frontier

12/8/2017

BGRI/Incrom/SIC BaF₂ Samples

ID	Vendor	Dimension (mm ³)	Polishing
SIC 1-20	SICCAS	30x30x250	Six faces
BGRI-2015 D, E, 511	BGRI	30x30x200	Six faces
Russo 2, 3	Incrom	30x30x200	Six faces

12/8/2017

BaF₂: Normalized EWLT and LO

Consistent damage in crystals from three vendors

Remaining light output after 120 Mrad: 40%/45% for the fast/slow component

12/8/2017

RIAC & LO Vs. Proton Fluence

Excellent radiation hardness of LYSO and BaF₂ up to 10¹⁵ p/cm²

Presented in SCINT 2017, will be published in IEEE TNS NS

12/8/2017

Neutron Irradiation Test at LANL

Los Alamos Neutron Science Center (LANSCE)

Bldg.

823

Samples are placed at the Target-4 East Port, about 1.2 m away from the neutron production target.

12/8/2017

Neutrons/Photons/Protons Fluxes

Neutrons/Photons/Protons fluxes are calculated by using MCNPX (Monte Carlo N-Particle eXtended). Plotted spectra are tallied in the largest sample volume (averaging)

12/8/2017

Fast and Slow Light from BaF₂

A radiation level exceeding 100 krad is expected at the proposed Mu2e-II, so BaF₂ is being considered.

The amount of light in the fast component of BaF_2 at 220 nm with sub-ns decay time is similar to CsI.

Spectroscopic selection of fast component may be realized by solar blind photocathode and/or selective doping.

12/8/2017

Slow Suppression: Doping & Readout

Slow component may be suppressed by RE doping: Y, La and Ce

B.P. SOBOLEV et al., "SUPPRESSION OF BaF2 SLOW COMPONENT OF X-RAY LUMINESCENCE IN NON-STOICHIOMETRIC Ba0.9R0.1F2 CRYSTALS (R=RARE EARTH ELEMENT)," Proceedings of The Material Research Society: Scintillator and Phosphor Materials, pp. 277-283, 1994.

Solar-blind cathode (Cs-Te) + La doping achieved F/S = 5/1

20 cm La Doped BaF₂ for Mu2e

Absorptions observed in 20 cm long sample with 1% La doping are attributed to cerium contamination. The F/S ratio is increased from 1/5 to 1/2, not very effective. Reported in the 1st Mu2e-II workshop at Fermilab, 2/16/2016

November 7, 2017

Presentation by Ren-Yuan Zhu, Caltech, in Fermilab

12/8/2017

Presented by Ren-Yuan Zhu in Mu2e-II Workshop at ANL

13

Eight BaF₂ Plates from BGRI

ID	Dimension (mm ³)	Polishing			
BGRI Y-doped BaF ₂ -1708-1,4	10x10x2	Double faces			
BGRI Undoped BaF ₂ -1708-5,8	10x10x2	Double faces			
All samples received in August 31, 2017					

Experiments

Properties measured at room temperature : PHS, LO & Decay kinetics

12/8/2017

Transmittance: Y:BaF₂ and BaF₂

Good transparency for both fast and slow scintillation

12/8/2017

Light Output Y:BaF₂ and BaF₂

F/S ratio increased from 0.21 to 6 .2, presented in NSS2017

Being irradiation up to 200 Mrad and 2x10¹⁵ n/cm² at the East Port of LANSCE

12/8/2017

Pulse Shape: BaF₂ Cylinders

BGRI BaF₂ cylinders of Φ 10×10 cm³ shows γ-ray response: 0.26/0.55/0.94 ns of rising/decay/FWHM width

Tail Reduced in BGRI BaF₂:Y

Slow component tail observed in 2 µs in BaF2, not BaF2:Y

12/8/2017

Summary of BaF₂ Cylinders

Consistent pulse shape observed between PbF_2 and BaF_2 , indicating that the decay time of the fast component in BaF_2 less than 0.6 ns, faster than literature

Samples	Dimensions	Excitation	Rise time (ns)	Decay time (ns)	FWHM (ns)
MCP- PMT240*	Ф40 mm	Laser pulse	0.185	N/A	1.36
PbF	50×50×50 mm ³	Cosmic- ray	0.18±0.05	0.61±0.05	0.88±0.07
SIC-U	Φ10×10 mm ³	Cosmic- ray	0.26±0.05	0.52±0.05	0.92±0.07
SIC-Y	Φ10×10 mm ³	Cosmic- ray	0.26±0.05	0.57±0.05	0.98±0.07
BGRI-U	Φ10×10 mm ³	Na-22 (511KeV)	0.22±0.05	0.59±0.05	0.92±0.07
BGRI-Y	Φ10×10 mm ³	Na-22 (511KeV)	0.29±0.05	0.50±0.05	0.96±0.07

*From test report of the Photek PMT240 MCPT.

November 7, 2017

Presentation by Ren-Yuan Zhu, Caltech, in Fermilab

Summary

- BaF₂ crystals show excellent radiation hardness beyond 100 Mrad, 1 x 10¹⁵ p/cm² and 2 x 10¹⁵ n/cm². They promise a very fast and robust calorimeter for Mu2e-II.
- Commercially available undoped BaF₂ crystals provide sufficient fast light with sub-ns FWHM pulse width. While lanthanum doping in BaF₂ crystals increases the F/S ratio from 1/5 to 1/1, yttrium doping increases the F/S ratio from 1/5 to 6/1 while maintaining the intensity of its sub-ns fast component unchanged. The slow contamination for BaF2:Y is already less than the commercially available undoped CsI, so is promising for the Mu2e-II.
- Additional R&D is crucial to develop yttrium doped BaF₂ crystals of large size for Mu2e-II. Will also pay an attention to photodetector with DUV response: LAPPD, Si or diamond based photodetectors

12/8/2017

Hamamatsu S13371-6050CQ-02

SiPM with VUV response is available: QE = 22% at 220 nm

Diamond Photodetector

In addition to SiPM with VUV response

E. Monroy, F. Omnes and F. Calle,"Wide-bandgap semiconductor ultraviolet photodetectors, IOPscience 2003 Semicond. Sci. Technol. 18 R33

400

E = 2.8 V/µm

UV/VIS > 108

600

Wavelength (nm)

800

E. Pace and A. De Sio, "Innovative diamond photo-detectors for UV astrophysics", Mem. S.A.It. Suppl. Vol. 14, 84 (2010)

12/8/2017

Presented by Ren-Yuan Zhu in Mu2e-II Workshop at ANL

1000