

Measurements of BaF₂ Crystals from BGRI and SICCAS

Ren-Yuan Zhu

California Institute of Technology

April 15, 2015

Mu2e Calorimeter Collaboration Meeting

Introduction

- Following a visit to Beijing Glass Research Institute (BGRI), Beijing, on January 9, 2015, two 3 x 3 x 20 cm BaF₂ crystal samples were obtained.
- Longitudinal transmittance (LT) was measured by using a Perkin-Elmer Lambda 950 spectrophotometer.
- Pulse height spectrum (PHS), Light output (LO) and light response uniformity (LRU) were measured by using a Hamamatsu R2059 PMT with a bi-alkali cathode and a quartz window and coincidence triggers from a ²²Na source for these two samples wrapped with two layers of Tyvek paper and grease coupling.
- Gamma-ray irradiation was carried out up to 100 krad for these two samples with degradation in LT, LO and LRU measured, and compared to SIC samples.

Beijing Glass Research Institute

April 15, 2015

Caltech HEP Crystal Laboratory

BaF₂ Crystal Samples

Compared to 20 3 x 3 x 25 cm test beam crystals from SIC

ID	Dimension (mm ³)	Polishing	
BGRI-2015D	30x30x200	Six faces	
BGRI-2015E	30x30x200	Six faces	

Initial Optical Quality (LT)

Caltech HEP Crystal Laboratory

Comparison of Transmittance

Comparison of EWLT

LT Before and After Gamma-ray Irradiation

Significant damage observed after 10 krad

Comparison: SIC2012 & BGRI2012

Much worse than SIC2012, but compatible with BGRI2012

Caltech HEP Crystal Laboratory

Setup for LO & LRU Measurements

Pulse Height Spectra: BGRI-2015D

Gate: 50 ns

Ave ER= 41.7%

April 15, 2015

Pulse Height Spectra: BGRI-2015D

Gate: 2500 ns

Ave ER= 16.5%

Ave ER= 16.7%

Pulse Height Spectra: BGRI-2015E

Gate: 50 ns

Ave ER= 38.8%

Ave ER= 39.6%

Pulse Height Spectra: BGRI-2015E

Gate: 2500 ns

Ave ER= 16.2%

Ave ER= 16.8%

B end coupled

800

April 15, 2015

1000

Caltech HEP Crystal Laboratory

Comparison of Light Output

All samples wrapped with two layers of Tyvek paper

LRU Before and After Gamma-ray Irradiation

Gate: 50 ns

LRU Before and After Gamma-ray Irradiation

Gate: 2,500 ns

Comparison of Front Slope

All samples wrapped with two layers of Tyvek paper

Comparison of Back Rise

All samples wrapped with two layers of Tyvek paper

Summary: Initial Properties

ID	Average of 20SIC Crystals	BGRI2015D	BGRI2015E
Dimension	30x30x250	30x30x200	30x30x200
T@220 nm (%)	85.5±0.2	87.9±0.2	85.0±0.2
T@300 nm (%)	91.3±0.2	92.9±0.2	92.5±0.2
EWLT of Fast Component (%)	86.1±0.2	89.0±0.2	86.9±0.2
EWLT of Slow Component (%)	91.1±0.2	92.4±0.2	92.4±0.2
LO 50 ns Gate (p.e./MeV)	119±1	116±1	131±1
Back Rise 50 ns Gate (%)	-38.4±2.5	-18.3±2.5	-13.8±2.5
δ _F 50 ns Gate (%/X ₀)	-1.4±0.5	0.7±0.5	0.1±0.5
RMS 50 ns Gate (%)	13.6	5.6	4.2
LO 2500 ns Gate (p.e./MeV)	562±6	710±7	731±7
Back Rise 2500 ns Gate (%)	-28.1±2.5	-13.2±2.5	-14.0±2.5
δ _F 2500 ns Gate (%/X ₀)	-0.2±0.5	0±0.5	0.4±0.5
RMS 2500 ns Gate (%)	9.3	4.2	4.0

Summary: Radiation Damage in EWLT and LO

April 15, 2015

Caltech HEP Crystal Laboratory

Summary

- Longitudinal transmittance, light output and light response uniformity of two 20 cm long BGRI samples are better than twenty 25 cm long SIC crystals, and much better than an early sample BGRI2012.
- This difference seems caused by different crystal length: 20 cm versus 25 cm.
- Radiation hardness of two BGRI samples was measured up to 100 krad. It is worse than SIC2012, and is compatible with BGRI2012, indicating improvement is needed by controlling oxygen contamination.
- BGRI is working in two directions: test alternative raw material suppliers and improving vacuum in furnaces.
- SICCAS decided to pursue non-vacuum growth in January with limited progress achieved so far.
- Additional vendors are important.

April 15, 2015

SICCAS: Non-Vacuum Growth

Problems and limitations of growth in vacuum

- Complicated and expensive growth system
- Poor efficiency (6 ingots from single growth per furnace)
- No incentive to invest

中国科学院上海硅酸盐研究所

Progress on growth BaF₂ in non-vacuum atmosphere

Before the visit

Two crystal boules grown in nonvacuum atmosphere before the visit

- Dec. 03, 2014 Jan. 12, 2015 60

Crack-free, clear crystal boule can be grown

Great progress, but more R&D work is needed

中国科学院上海硅酸盐研究所 SICCAS

New Facility to be built to meet the M2e requirements

Progress on growth BaF₂ in non-vacuum atmosphere

After the visit

Three crystal boules grown in nonvacuum atmosphere at March. 26, 2015 Crack

- Fully oxidized
- No carbon and gas inclusions
- Wrong improvement direction

April 15, 2015

Caltech HEP Crystal Laboratory

23