

2nd Report on Twenty Mu2e BaF₂ Crystals from SIC

Ren-Yuan Zhu

California Institute of Technology

September 22, 2014

Mu2e Calorimeter Collaboration Meeting

Crystal Samples and Experiment

Sample ID	Received Date	Dimension (mm ³)	Total #	Polish	
SIC-1,20	4/25/2014	$30 \times 30 \times 250$	20	Six surfaces	

Properties measured: light output, decay kinetics and light response uniformity for Tyvek and other wrappings

9/22/2014

Effect of Crystal Wrapping (I)

The highest LO is observed with 8 layer Teflon wrapping

Effect of Crystal Wrapping (II)

Adding Al foil helps if Teflon layers is less than 8.

Summary: Wrapping Test for SIC-1

	Fast LO (p.e./MeV)	LO: 50 ns (p.e./MeV)	RMS 50 ns (%)	δ _F 50 ns (%/X ₀)	R _B 50 ns (%)	Slow LO (p.e./MeV)	LO: 2.5 μs (p.e./MeV)	RMS 2.5 μs (%)	δ _F 2.5 μs (%/X ₀)	R _B 2.5 μs (%)
Al Foil (4)	126	131	16.8	-2.0	-44.8	563	579	8.5	-0.3	-25.9
Al Mylar (2)	129	148	10.7	-0.9	-30.4	597	644	5.6	0	-17.3
ESR (2)	119	130	11.0	-1.4	-30.2	467	525	5.0	-0.4	-15.1
Teflon (3)	117	117	21.0	-0.5	-63.5	615	567	12.9	1.2	-43.6
Teflon (3) +Al Foil (2)	119	125	20.4	-0.8	-61.9	701	645	12.2	0.3	-39.0
Teflon (5)	123	135	18.3	-0.9	-53.5	736	706	9.7	0.3	-32.0
Teflon (5) +Al Foil (2)	123	135	17.9	-1.1	-52.8	775	741	13.0	-1.2	-37.6
Teflon (8)	167	172	20.7	-2.0	-58.2	837	788	13.0	-1.2	-37.9
Teflon (8) +Al Foil (2)	165	178	20.6	-2.2	-58.6	839	788	13.1	-1.3	-36.8
Teflon Plate	118	125	18.2	-1.1	-53.1	614	574	12.1	0.5	-39.4
Tyvek (2)	119	130	14.4	-1.6	-39.8	591	586	9.4	-0.1	-29.6

Two layers of Aluminized Mylar seem providing the best uniformity

Reflectance Measurements

Sample ID	Thickness (μm)			
Al Foil	15			
Al Mylar	10			
ESR	65			
Steel Foil	50			
Tyvek	150			
Teflon ×3	25×3			
Teflon ×5	25×5			
Teflon ×8	25×8			

Properties measured at room temperature:

Reflectance as a function of wavelength

Setup for Reflectance Measurement

Systematic Uncertainties

RMS values extracted from ten repeated measurements for 8 layers of Teflon films:

<1% with λ longer than 250 nm; and Up to 15% with λ shorter than 250 nm.

Normalized Reflectance

BaSO₄ is the coating material used in the integrating sphere

EWRR : Emission weighted relative reflectance $EWRR = \int em(\lambda) \cdot reflectance(\lambda) d\lambda / \int em(\lambda) d\lambda$

Caltech HEP Crystal Laboratory

LO versus Reflectance for BaF₂ SIC-1

Positive correlations observed

Radiation Damage in Various Reflectors

Aluminum foil is the best reflector up to 100 Mrad

Radiation Damage in Wrapping Materials

Al foil is radiation hard up to 100 Mrad for BaF₂

Light Response Uniformity

Crystals wrapped with two layers of Tyvek (2 x 150 µm)

One end coupled to

Hamamatsu R2059 PMT With DC-200 grease coupling

50 ns and 2.5 µs gate Coincidence trigger from a Na-22 source

γ rays

Light output and FWHM energy resolution (see report dated 6/25/14) are measured at seven points along the crystal

No Difference between Coupling Ends

SIC1: No difference with alternative ends coupled to the PMT

Intrinsic scintillation production is uniform

LRU and LO of No.1-10 (Tyvek)

50 ns

LRU and LO of No.1-10 (Tyvek)

2.5 µs

CMS Uniformity Specification

D. Graham & C. Seez, CMS Note 1996-002

Front Slope and Back Rise

Front Slope & Back Rise: No.1-10 (Tyvek)

50 ns

Front Slope & Back Rise: No.1-10 (Tyvek)

2.5 µs

Summary of Light Output

Consistent with LO obtained by fitting decay kinetics

Correlations between Slow & Fast Components

Positive correlations observed

Correlations between ER and LO

Negative correlations observed

Summary of RMS of LO Measured @ 7 Points

14/9% observed for 50 ns/2.5 µs gate

Summary of Light Response Uniformity

22/14% negative slope observed for 50 ns/2.5 µs gate

Summary of Front Slope (Tyvek)

1.4% & 0.2% per X₀ observed for fast & slow components

Summary of Back Rise (Tyvek)

38% and 28% observed for fast and slow components

Simulation is needed to understand the consequence

Summary

- Crystal SIC-1 was measured with different wrappings:
 - Light output of BaF₂ crystals depends on crystal wrapping. Eight layers of PTFE Teflon film (8 x 25 µm) show the best light output, followed by two layers of aluminized Mylar (2 x 10 µm), four layers of Al foil (4 x 15 µm) and two layers of Tyvek paper (2 x 150 µm 1056D). Additional Al foil helps if Teflon layers are less than 8.
 - Positive correlations are observed between the BaF₂ light output and the measured reflectance of wrapping materials.
 - Al foil is radiation hard up to 100 Mrad.
- Light response uniformity was measured for all twenty BaF₂ crystals wrapped with two layers of Tyvek paper:
 - No change of LRU when the crystal end coupled to PMT is altered.
 - An overall negative slope of 22% &14% (rms of 14% & 9%) was observed for 50 ns & 2.5 µs gate, indicating absorption dominance of the UV light.
 - An alternative fit with two segments shows 1.4%/X₀ & 0.2%/X₀ slope in the front 13 cm and 38% & 28% rise in the back 12 cm for 50 ns & 2.5 µs gate.

No Difference between Coupling Ends

SIC2: No difference with alternative ends coupled to the PMT

No Difference between Coupling Ends

SIC3: No difference with alternative ends coupled to the PMT

LRU and LO of No.11-20 (Tyvek)

50 ns

LRU and LO of No.11-20 (Tyvek)

2.5 µs

Front Slope & Back Rise: No.11-20 (Tyvek)

50 ns

Front Slope & Back Rise: No.11-20 (Tyvek)

2.5 µs

LRU of Different Wrapping

The best LRU is observed in the crystal wrapped with AI Mylar or ESR.

LRU of Different Wrapping

The additional AI foil does not affect the LO and LRU.

Front Slope and Back Rise of Different Wrapping

50 ns

Front Slope and Back Rise for Different Wrapping

2.5 µs

Front Slope & Back Rise for Different Teflon Layers

