

Development of Novel Inorganic Scintillators for Future High Energy Physics Experiments

Chen Hu, Liyuan Zhang, Ren-Yuan Zhu

California Institute of Technology

March 3, 2020

Presented in the Mu2e-II Snowmass22 Workshop

Why Crystal Calorimetry?

- Precision photons and electrons measurements enhance physics discovery potential in HEP experiments.
- Performance of crystal calorimeter is well understood for e/γ , and is investigated for jets measurements :
 - The best possible energy resolution and position resolution;
 - Good e/ γ identification and reconstruction efficiency;
 - Excellent jet mass resolution with dual readout, either C/S and F/S gate.
- The next generation crystal detectors for HEP experiments:
 - Bright, fast and rad-hard LYSO and LuAG ceramics at the HL-LHC;
 - BaF₂:Y with <1 ns decay: ultrafast calorimetry for unprecedented rate;</p>
 - Cost effective crystals for the homogeneous hadron calorimetry.

Why BaF₂:Y for Mu2e-II?

- Undoped CsI crystal used for the Mu2e calorimeter has a fast scintillation at 310 nm with 30 ns decay time and survives an ionization dose up to 100 krad.
- BaF₂ crystal has a ultrafast scintillation at 220 nm with 0.5 ns decay time and a similar intensity as CsI, and may survive 100 Mrad. Its slow scintillation at 300 nm with 650 ns decay time, however, causes pileup in a high rate environment.
- Two approaches have been used to suppress the slow scintillation in BaF₂: (1) rare earth doping and/or (2) dedicated photodetector. Yttrium doping in BaF₂ crystals is found effective, promising a ultrafast calorimeter.
- Mass production capability of BaF₂ exists in industry:
 - BGRI (China), Incrom (Russia) and SICCAS (China);
 - Hellma (Germany).
- Work on rare earth (La and La/Ce) doped BaF₂ crystals were reported in the last Mu2e-II workshop. Reported today is **γ-ray induced readout noise and damage** in long BaF₂:Y crystals.

Ultrafast and Slow Light from BaF₂

BaF₂ has a ultrafast scintillation component @ 220 nm with 0.5 ns decay time and an intensity similar to undoped Csl. It has also a factor of 5 larger slow component @ 300 nm with 300 ns decay time.

Slow suppression may be achieved by rare earth (Y, La and Ce) doping, and/or solarblind photo-detectors, e.g. Cs-Te, K-Cs-Te and Rb-Te cathode

Yttrium Doped Small BaF₂ Samples

Increased F/S ratio observed in BGRI BaF₂:Y crystals, Proc. SPIE 10392 (2017)

Э

BGRI BaF

8 9 10 11 12 13 14 15 16 17 18 19 20 21

22 23 24 25 26 27

2020 BaF₂:Y and Three BaF₂ Crystals

3GRI BaF ₂ :Y-2020	Sample
SIC BaF ₂ :Y-2020	BGRI BaF ₂ :
BGRI BaF-1507	SIC BaF ₂ :Y
	BGRI BaF ₂
SIC BaF ₂ -2	SIC BaF
	SIC BaF
SIC BaF ₂ -8	

Sample ID	Dimension (mm ³)
BGRI BaF ₂ :Y-2020	25×25×201
SIC BaF ₂ :Y-2020	25×25×197
BGRI BaF ₂ -1507	30×30×200
SIC BaF ₂ -2	30×30×250
SIC BaF ₂ -8	30×30×250

Light Output & Decay Kinetics

BaF₂ wrapped by Tyvek and coupled to a R2059 PMT via DC-200 fluid Significant reduction in slow component observed in BaF₂:Y crystals

Gamma-ray Induced Photocurrent

BaF₂ crystals, wrapped by Tyvek paper and coupled to the R2059 PMT via an air gap, were irradiated by ⁶⁰Co γ-rays under dose rates of 2 and 23 rad/h

F is defined as the radiation induced photoelectron numbers per second, normalized to the dose rate.
RIN (σ) is defined as the fluctuation of photoelectron number (Q) in the readout gate normalized to the light output (LO) of BaF₂

 $F = \frac{\frac{Photocurrent}{Charge_{electron} \times Gain_{SiPM}}}{Dose \ rate_{\gamma-ray} \ or \ Flux_{neutron}}$

 $Q = F \times Dose Rate \times Gate Length$

$$\sigma = \frac{\sqrt{Q}}{LO}$$
 (MeV)

History of Photocurrent: Two BaF₂:Y under Dose Rates of 2 and 23 rad/h

Presented by Ren-Yuan Zhu, Caltech, in the Mu2e-II Snowmass22 Workshop

History of Photocurrent: Two SIC BaF₂ Crystals under Dose Rates of 2 and 23 rad/h

Presented by Ren-Yuan Zhu, Caltech, in the Mu2e-II Snowmass22 Workshop

RIN:y for 50 ns gate and 20 rad/h Dose Rate

Current values scaled to: BaF_2 crystal dimension of $30 \times 30 \times 250$ mm³ and PMT gain of 2.4×10^4 for R2059 @ -1100 V (4.8×10^3 @ -900 V); LO values scaled to air gap.

Crystal ID	L.O. corrected to air gap (p.e./MeV)*		F/S	Dose rate (rad/h)	Dark cur. before	Photo cur.	Dark cur. 20s after irrad.	Dark cur after 20s/Photo	Dark cur. after 1000s –before	F (p.e./s/(rad/h))	RIN: Y			
	50 ns	2500 ns			IITau. (IIA)	(μΑ)	(nA)	cur. (×10 ⁻⁴)	(nA)		(Kev)			
BGRI	53	127	0.64	2	0.5	24	34	14	0.05	3 1~109	1050			
BaF ₂ :Y-2020	55		0.04	127 0.04	23	0.5	269	122	4.5	0.22	5.1~10	1050		
SIC	15	87	1 08	2	0.4	10	30	29	0.03	1 3~109	810			
BaF ₂ :Y-2020	43		1.00	1.00	07 1.00	23	0.4	115	245	21	1.0	1.5×10 ²	010	
BGRI	16	270	0 10	2	0.8	41	5.7	1.4	1.6	5 8~109	1650			
BaF ₂ -1507	40	528	0.10	23	1.8	504	43	0.9	7.5	J.0×10 ²	1050			
SIC	48	8 326	226	226 0	226	0 10	2	6.0	45	10	2.1	0.92	5 8~109	1500
BaF ₂ -2			0.10	23	3.0	520	24	0.5	5.9	J.8×10 ²	1390			
SIC	46	46 328 0	16 220	228 0	228 0.00	16 228 0.0	2	2.0	43	10	2.3	1.1	5 0×109	1670
BaF ₂ -8			0.09	23	11	555	63	1.1	5.3	J.9×10 ²	10/0			

Compared to CsI spec of 0.6 MeV, a shorter gate and/or solar blind photodetector are need

y-Ray Induced Photocurrent vs Dose Rate

Good linearity between the y-ray induced photocurrent and the dose rate

Yttrium doping in BaF₂ reduces the y-ray induced photocurrent significantly

F and RIN: γ vs. LO in 50 ns and 2.5 μs

Presented by Ren-Yuan Zhu, Caltech, in the Mu2e-II Snowmass22 Workshop

F and RIN: vs. Afterglow

RIN:y affected Photodetector QE/PDE Response

QE/PDE of four VUV photodetectors for BaF₂ and BaF₂:Y Paper N05-03 in the virtual IEEE NSS/MIC 2020 Conference Record (2020)

Dhotodotostor	EWQE/PDE _{fast}	EWQE/PDE _{slow}	EWQE/PDE _{BaF}	EWQE/PDE _{BaF:Y}	Relative	Relative	Relative
Photodelector	(%)	(%)	(%)	(%)	LO (50 ns)	F _{BaF}	F _{BaF:Y}
Hamamatsu R2059	15.2	20.9	20.0	18.7	1.00	1.00	1.00
Photek Solar-Blind	25.6	10.6	13.0	16.1	1.68	0.65	0.86
FBK SiPM w/UV Filter-	17.8	12.7	13.5	14.7	1.17	0.68	0.79
Hamamatsu MPPC	10.5	9.8	9.9	10.2	0.69	0.50	0.55

Presented by Ren-Yuan Zhu, Caltecn, in the iviuze-ii Showmasszz vvorkshop

RIN: y for Four VUV Photodetector

Photodetector	EWQE/PDE _{fast} (%)	EWQE/PDE (%)	LO(50 ns) p.e./MeV	F	RIN:y (keV)		
	BGRI BaF ₂ :	Y-2020					
Hamamatsu R2059 PMT	15.2	18.7	53	3.1×10^{9}	1050		
Photek PMT Solar Blind	25.6	16.1	89	2.7×10^{9}	580		
FBK SiPM w/UV Filter-I	17.8	14.7	62	2.4×10^{9}	800		
Hamamatsu VUV MPPC	10.5	10.2	37	1.7×10^{9}	1120		
	SIC BaF ₂ :	Y-2020					
Hamamatsu R2059 PMT	15.2	18.7	45	1.3×10 ⁹	810		
Photek PMT Solar Blind	25.6	16.1	76	1.1×10 ⁹	450		
FBK SiPM w/UV Filter-I	17.8	14.7	53	1.0×10^{9}	610		
Hamamatsu VUV MPPC	10.5	10.2	31	7.1×10^{8}	870		
	BGRI BaF	2-1507					
Hamamatsu R2059 PMT	15.2	20.0	46	5.8×10 ⁹	1650		
Photek PMT Solar Blind	25.6	13.0	77	3.8×10 ⁹	790		
FBK SiPM w/UV Filter-I	17.8	13.5	54	3.9×10 ⁹	1160		
Hamamatsu VUV MPPC	10.5	9.9	32	2.9×10 ⁹	1680		
SIC BaF ₂ -2							
Hamamatsu R2059 PMT	15.2	20.0	48	5.8×10^{9}	1590		
Photek PMT Solar Blind	25.6	13.0	81	3.8×10 ⁹	760		
FBK SiPM w/UV Filter-I	17.8	13.5	56	3.9×10 ⁹	1120		
Hamamatsu VUV MPPC	10.5	9.9	33	2.9×10 ⁹	1620		

Solar blind photodetector reduces RIN: y significantly Taking into account the area coverage, a shorter gate is needed

1 Mrad Damage in BaF₂:Y Crystals

SIC 2017 BaF_2 : Y sample shows a similar performance as BaF_2 crystals Recovery is small for the fast component

Crystal quality is diverse at this stage R&D needed for improvement

Presentation by Ren-Yuan Zhu in the Online Mini-Workshop on a Crystal ECAL

Summary

 BaF_2 crystals provide ultrafast light with 0.5 ns decay time. Yttrium doping increases the F/S ratio while maintaining the ultrafast light intensity. With subns pulse width BaF_2 : Y promises a ultrafast calorimeter.

RIN: y was measured for two BaF₂:Y and three BaF₂ large size crystals under dose rates of 2 and 23 rad/h. While it is at a level of about 1.6 MeV for BaF₂ samples of $30 \times 30 \times 250$ mm³ readout by R2059 PMT in 50 ns gate, a factor of two reduction is observed for BaF₂:Y crystals.

RIN: γ is highly correlated to the LO in 2.5 µs gate not 50 ns gate, indicating dominance of the slow scintillation component. Yttrium doping reduces RIN: γ , and increases/reduces afterglow with short/long decay time. Both solar blind photodetector and a shorter integration gate are required to further reduce the RIN: γ values to less than 0.6 MeV.

 γ -ray induced damage in BaF₂:Y crystals is sample dependent. R&D is needed for improvement. Measurements are on way for γ -rays and neutrons.

Acknowledgements: DOE HEP Award DE-SC001192

Cost of Mass Produced Crystals (March, 2019)

Scaling to X₀, order of crystal cost: PWO, BGO, CsI, BSO, BaF₂:Y, LYSO

ltem	Size	1 m ³	10 m ³	100 m ³	Scaled to X ₀
BGO	22.3×22.3×280 mm	\$8/cc	\$7/cc	\$6/cc	1.23
BaF ₂ :Y	31.0×31.0×507.5 cm	\$12/cc	\$11/cc	\$10/cc	2.28
LYSO:Ce	20.7x20.7x285 mm	\$36/cc	\$34/cc	\$32/cc	1.28
PWO	20x20x223 mm	\$9/cc	\$8/cc	\$7.5/cc	1.00
BSO	22x22x274 mm	\$8.5/cc	\$7.5/cc	\$7.0/cc	1.29
Csl	35.7x35.7x465 mm	\$4.6/cc	\$4.3/cc	\$4.0/cc	2.09