Result of Eight 2019 BTL LYSO Bars after 5.1 Mrad, $3.2 \times 10^{14} \mathrm{n}_{\mathrm{eq}} / \mathrm{cm}^{2}$, and $1.9 \times 10^{13} \mathrm{p} / \mathrm{cm}^{2}$

Chen Hu^{1}, Liyuan Zhang ${ }^{1}$, Ren-Yuan Zhu ${ }^{1}$, Adi Bornheim ${ }^{1}$, Maria Spiropulu ${ }^{1}$, Jason Trevor ${ }^{1}$, Evan D. Niner ${ }^{2}$, Mandy Kiburg ${ }^{2}$ and Jason St. John²
${ }^{1}$ California Institute of Technology
${ }^{2}$ Fermi National Accelerator Laboratory
May 25, 2022

BTL LYSO Bars from 8 Vendors

Received on Dec 4th, 2019. Poor surface quality observed for some samples Sent to ITA: $4 / 30 / 20,1.9 \times 10^{13} \mathrm{p} / \mathrm{cm}^{2}: 6 / 16 / 21$, back to Caltech: $7 / 22 / 21$

Experiments

Longitudinal transmittance (LT), light output (LO) and decay time (τ) measured before and after 5.1 Mrad, $3.2 \times 10^{14} \mathrm{n}_{\mathrm{eq}} / \mathrm{cm}^{2}$ and $1.9 \times 10^{13} \mathrm{p} / \mathrm{cm}^{2}$

LT/LO/ τ, RIN, PL@-35/-60 ${ }^{\circ} \mathrm{C}$, $5.1 \mathrm{Mrad}, 3.2 \times 10^{14} \mathrm{n}_{\text {eq }} / \mathrm{cm}^{2}$, and ITA reported on $1 / 22 / 20,3 / 31 / 20,7 / 22 / 20,8 / 26 / 20,5 / 19 / 21$ and $7 / 7 / 21$, respectively

Error Weighted Average Fluence

Fluence: error weighted average of $\mathrm{Be}-7$ \& $\mathrm{Na}-22$ from activated Al foils Eight 2019 BTL LYSO bars in the G3 group in Liyuan's report on 3/18/22

Group	Front EW Avg Fluence (cm^{-2})	$\begin{aligned} & \pm \text { Error } \\ & \left(\mathrm{cm}^{-2}\right) \end{aligned}$	Back EW Avg Fluence (cm^{-2})	$\begin{aligned} & \pm \text { Error } \\ & \left(\mathrm{cm}^{-2}\right) \end{aligned}$	Average Fluence $\left(\mathrm{cm}^{-2}\right)$	$\begin{aligned} & \pm \text { Error } \\ & \left(\mathrm{cm}^{-2}\right) \end{aligned}$
1	$2.16 \mathrm{E}+13$	$7.2 \mathrm{E}+11$	$1.59 \mathrm{E}+13$	$6.9 \mathrm{E}+11$	$1.88 \mathrm{E}+13$	$5.0 \mathrm{E}+11$
2	$1.43 \mathrm{E}+13$	$6.8 \mathrm{E}+11$	$9.49 \mathrm{E}+12$	$7.1 \mathrm{E}+11$	$1.19 \mathrm{E}+13$	$4.9 \mathrm{E}+11$
3	1.91E+13	$7.6 \mathrm{E}+11$	$1.30 \mathrm{E}+13$	$7.5 \mathrm{E}+11$	$1.61 \mathrm{E}+13$	$5.3 \mathrm{E}+11$

Fluence: 2.2, 1.4 and 1.9×10^{13} respectively for G1, G2 and G3

Transmittance for 82019 Bars

Radio-luminescence weighted longitudinal transmittance (EWLT) Radiation induced absorption coefficient (EWRIAC)

Light Output for 82019 Samples

LYSO bars with an air gap coupling to R1306 PMT triggered by a $\mathrm{Na}-22$ source at the center

Light Output vs EWLT \& EWRIAC

Good correlations between LO, EWLT and EWRIAC indicate that LO loss Is due to radiation induced absorption with a mean light path of 9 cm

Normalized EWLT and EWRIAC

γ-rays: Average EWLT: -5.7\%; Average EWRIAC: $1.0 \mathrm{~m}^{-1}$ γ-ray + neutrons: Average EWLT: -12.0\%; Average EWRIAC: $2.3 \mathrm{~m}^{-1}$ $\gamma+\mathrm{n}+$ protons: Average EWLT: -12.8\%; Average EWRIAC: $2.4 \mathrm{~m}^{-1}$

Normalized Light Output and τ

γ-rays: Average $\overline{\mathrm{L}} \mathrm{LO} / \mathrm{LO}=-9.7 \%$; Average $\bar{\delta} \tau / \tau=-0.9 \%$ γ-ray + neutrons: Average δ LO/LO $=-17.0 \%$; Average $\delta \tau / \tau=-0.2 \%$ $\gamma+\mathrm{n}+$ protons: Average $\overline{\mathrm{L}} \mathrm{LO} / \mathrm{LO}=-18.3 \%$; Average $\bar{\delta} \tau / \tau=-0.5 \%$

Average LO/七 for Timing

Summary

LT, EWRIAC, LO and τ were measured for eight 2019 LYSO bars from different vendors after 5.1 Mrad at Caltech, $3.2 \times 10^{14} \mathrm{n}_{\mathrm{eq}} / \mathrm{cm}^{2}$ at Lowell, and $1.9 \times 10^{13} \mathrm{p} / \mathrm{cm}^{2}$ at Fermilab ITA.
Proton induced LO loss is due to induced absorption with 9 cm path length, consistent with γ-ray and neutron data.
The average variation of EWRIAC, LO and LO/̃ after $\gamma+$ neutron + proton irradiation is $2.4 \mathrm{~m}^{-1},-18.3 \%$ and -17.8% respectively for 8 vendors. The overall degradation in timing resolution is 9.3% with a divergence of 8% for eight LYSO vendors.
Additional proton irradiation is planned at LANSCE with 800 MeV proton beam.

Acknowledgements: DOE HEP Grants DE-SC0011925 and DE-ACO2-07CH11359

