Proton Fluence for LYSO Samples Irradiated at ITA: TSW-1830 in 2021

<u>Liyuan Zhang</u>, Chen Hu, Ren-Yuan Zhu, Adi Bornheim, Jason Trevor, Maria Spiropulu California Institute of Technology

Evan D. Niner, Meka E. Francis, Mandy Kiburg, Jason St. John Fermi National Accelerator Laboratory

Introduction

- The ITA at the end of the MTA beamline provides 400 MeV protons with a flux of 4.7E+12 p/min and a FWHM spot size adjustable between 10 and 26 mm.
- 27 LYSO bars in three groups of 9 each were irradiated to 2.5E+13 p/cm² at ITA in June with 26 mm beam spot, or about 44 min/group, as reported by Ren-Yuan on July 7, 2021, in the CMS BTL general meeting.
- Radioactivity of Na-22 and Be-7 isotopes was measured for AI foils at front and back of each LYSO bars at FNAL Radionuclide Analysis Facility (RAF) in July and August.
- Based on FNAL RAF reports, the proton fluence at front and back of each LYSO bar was calculated, results from the two isotopes are combined by error weighted average.

A Group of Nine LYSO Bars

Nine (3x3) LYSO bars with 9 each of AI foils mounted on the clamps at the front and back ends
Total 18 AI foils in each group were measured separately after irradiation at FNAL RAF.

Be-7 and Na-22 Measurement at FNAL ITA

- Each AI foil was counted using an Ortec GEM-70185-S HPGe detector and weighed using a Sartorius Cubis Model MSE524P-100-DU balance.
- Na-22 and Be-7 peaks were fitted and corrected to activity (pCi/g) right after irradiation.

Radionuclide Analysis Facility Gamma Analysis Report Issued by Meka E. Francis

 Report Date:
 July 23, 2021

 Work Request #:
 21-274

 Submitted by:
 Joel Fulgham on 6/30/21

 Workbook:
 HPGe#2-14, page(s) 50

ITA Cal Tech Dosimeter Chips - 1F

The ESH Section/RPO/RCT Team submitted 9 aluminum dosimeter chip samples on Work Request# 21-274 for activation analysis. Each sample was counted on the date and time listed below at Fermilab Site 39 Annex using an Ortec GEM-70185-S HPGe detector (crystal diameter 71.8 mm) in a model LS-1116 Nuclear Lead Company, Inc. ultra-low background lead shield. Peaks in the sample spectra were fitted using Ortec GammaVisionO for Windows Model A66-B32 Version 8.01. Each chip was weighed using a Satorius Cubis Model MSE524P-100-DU valance. The following table lists the radionuclides detected in the samples along with the corresponding specific activities, which have been corrected to the time of sampling. The portion of the quoted error due to solid angle, mass, efficiency and self-attenuation was 5.9%. A list of the regions of interest (ROIs) used to calculate the results is attached in Appendix A.

SampleID#	Sample Date	Sample Time	Chip ID	Count Information	Chip Mass	Count Date/Time	Radionuclide	Activity (pCi/g)
210615JF12	6/15/2021	14:45	1F-A	7,200sec @ 2cm	0.0130 ± 0.0002 g	7/16/2021 7:50	Be-7	$5,500 \pm 1,300$
							Na-22	$1,460 \pm 210$
210615JF13	6/15/2021	14:45	IF-B	7,200sec @ 2cm	0.0121 ± 0.0002 g	7/16/2021 14:37	Be-7	5,300 ± 1,500
							Na-22	$2,040 \pm 180$
210615JF14	6/15/2021	14:45	IF-C	7,200sec @ 2cm	0.0130 ± 0.0002 g	7/20/2021 7:54	Be-7	$4,800 \pm 1,300$
							Na-22	$1,460 \pm 180$
210615JF15	6/15/2021	14:45	1F-D	7,200sec @ 2cm	0.0119 ± 0.0002 g	7/20/2021 10:02	Be-7	$7,400 \pm 1,600$
							Na-22	$2,110 \pm 220$
210615JF16	6/15/2021	14:45	1F-E	7,200sec @ 2cm	0.0136 ± 0.0002 g	7/16/2021 9:58	Be-7	6,000 ± 1,200
							Na-2	$1,600 \pm 160$
210615JF17	6/15/2021	14:45	1F-F	7.200sec @ 2cm	0.0131 ± 0.0002 g	7/15/2021 16:34	Be	$.700 \pm 1.100$
							Na-2	$1,400 \pm 160$
210615JF18	6/15/2021	14:45	1F-H	7,200sec @ 2cm	0.0120 ± 0.0002 g	7/20/2021 12:05	Be-7	$6,800 \pm 1,400$
							Na-22	$1,800 \pm 200$
210615JF19	6/15/2021	14:45	1F-I	7,200sec @ 2cm	0.0122 ± 0.0002 g	7/20/2021 15:26	Be-7 Na-22	$7,400 \pm 1,400$ 1.440 ± 170

Isotope Atom Number from Activation Data

For a radioactive isotope with a decay time τ ,

 $N = N_i e^{-t/\tau}$

$$\frac{dN}{dt} = -\frac{N_i}{\tau}e^{-t/\tau}$$

Set t=0 at the measurement time,

$$N_i = \frac{dN}{dt} \times \tau = \frac{dN}{dt} \times \frac{t_{1/2}}{\ln 2}$$

Where, $t_{1/2}$ is half-life time in second.

Initial isotope atom number may be calculated by using activation data: 1 Curie = 3.7×10^{10} decay/second or $1 \text{ pCi} = 3.7 \times 10^{-2} \text{ decay/second}$ $t_{1/2}$ (Na-22) = 8.206 × 10⁷ sec $t_{1/2}$ (Be-7) = 4.598 × 10⁶ sec

Proton Fluence from Initial Isotope Atom Number

[1] EPJ Web of Conferences **146**, 11039 (2017), DOI: 10.1051/epjconf/201714611039

When irradiation time << isotope decay time,

$$N_i = F \times N_a \times \sigma$$

- N_i : number of isotope atoms,
- $N_{\rm a}$: number of AI atoms,
- F: proton fluence in cm⁻²,
- σ : activation cross-section in cm².

 $F = \frac{N_i}{N_a \times \sigma}$

Al foil data Dimensions: Φ2.5×1 mm³ Al density: 2.7 g/cm³ Al foil weight: 0.01325 g Al atom mass: 26.982 u Cross-sections from [1]:

²⁷Al (p,x)²²Na: (15.42 \pm 0.56) mb ²⁷Al (p,x)⁷Be: (2.96 \pm 0.11) mb

Fluences are calculated using Be-7 and Na-22 counting data for each foil, and are combined to a relative error weighted average

Summary of the Group-1 Front

Average fluence is $(2.16\pm0.07)\times10^{13}$ p/cm²

ID	Proton Fluence Be-7 (cm ⁻²)	Fluence ± err Be-7 (cm ⁻²)	Proton Fluence Na-22 (cm ⁻²)	Fluence ± err Na-22 (cm ⁻²)	EW Fluence (cm ⁻²)	EW Fluence ± err (cm ⁻²)
1F-A	2.04E+13	4.8E+12	1.86E+13	2.7E+12	1.90E+13	2.3E+12
1F-B	1.97E+13	5.6E+12	2.60E+13	2.3E+12	2.45E+13	2.2E+12
1F-C	1.78E+13	4.8E+12	1.86E+13	2.3E+12	1.84E+13	2.1E+12
1F-D	2.75E+13	5.9E+12	2.69E+13	2.8E+12	2.70E+13	2.6E+12
1F-E	2.23E+13	4.5E+12	2.04E+13	2.0E+12	2.08E+13	1.9E+12
1F-F	3.23E+13	4.1E+12	1.78E+13	2.0E+12	2.13E+13	1.8E+12
1F-H	2.53E+13	5.2E+12	2.29E+13	2.5E+12	2.35E+13	2.3E+12
1F-I	2.75E+13	5.2E+12	1.83E+13	2.2E+12	2.05E+13	2.1E+12
1F-K	2.40E+13	3.5E+12	1.74E+13	2.4E+12	1.90E+13	2.0E+12
Avg =	2.41E+13	1.6E+12	2.08E+13	7.9E+11	2.16E+13	7.2E+11
Std =	4.6E+12		3.6E+12		2.9E+12	

Summary of the Group-1 Back

Average fluence is $(1.59\pm0.07)\times10^{13}$ p/cm²

ID	Proton Fluence Be-7 (cm ⁻²)	Fluence ± err Be-7 (cm ⁻²)	Proton Fluence Na-22 (cm ⁻²)	Fluence ± err Na-22 (cm ⁻²)	EW Fluence (cm ⁻²)	EW Fluence ± err (cm ⁻²)
1B-L	1.63E+13	4.1E+12	1.77E+13	1.9E+12	1.73E+13	1.8E+12
1B-M	1.93E+13	4.5E+12	1.44E+13	2.5E+12	1.57E+13	2.2E+12
1B-N	1.32E+13	3.3E+12	1.72E+13	1.8E+12	1.61E+13	1.6E+12
1B-O	2.42E+13	4.1E+12	1.44E+13	2.7E+12	1.70E+13	2.2E+12
1B-R	2.64E+13	5.2E+12	2.01E+13	2.4E+12	2.18E+13	2.3E+12
1B-S	1.82E+13	4.8E+12	1.30E+13	2.3E+12	1.44E+13	2.1E+12
1B-U	1.26E+13	5.6E+12	1.32E+13	2.4E+12	1.31E+13	2.3E+12
1B-X	1.60E+13	4.5E+12	1.36E+13	2.3E+12	1.43E+13	2.1E+12
1B-Y	1.75E+13	4.5E+12	1.20E+13	2.2E+12	1.35E+13	2.0E+12
Avg =	1.82E+13	1.5E+12	1.51E+13	7.6E+11	1.59E+13	6.9E+11
Std =	4.6E+12		2.7E+12		2.7E+12	

Summary of the Group-2 Front

Average fluence is $(1.46 \pm 0.07) \times 10^{13} \text{ p/cm}^2$

ID	Proton Fluence Be-7 (cm ⁻²)	Fluence ± err Be-7 (cm ⁻²)	Proton Fluence Na-22 (cm ⁻²)	Fluence ± err Na-22 (cm ⁻²)	EW Fluence (cm ⁻²)	EW Fluence ± err (cm ⁻²)
2F-A	1.97E+13	4.5E+12	1.78E+13	2.3E+12	1.84E+13	2.1E+12
2F-B	1.67E+13	4.5E+12	1.07E+13	1.9E+12	1.25E+13	1.9E+12
2F-C	1.97E+13	3.4E+12	9.29E+12	2.3E+12	1.24E+13	1.9E+12
2F-D	2.30E+13	5.6E+12	1.57E+13	1.9E+12	1.78E+13	2.1E+12
2F-E	1.93E+13	4.5E+12	1.32E+13	2.0E+12	1.50E+13	1.9E+12
2F-F	1.30E+13	4.8E+12	1.50E+13	2.0E+12	1.44E+13	2.0E+12
2F-H	2.38E+13	4.5E+12	1.55E+13	2.5E+12	1.80E+13	2.2E+12
2F-I	1.26E+13	4.8E+12	1.02E+13	2.5E+12	1.09E+13	2.3E+12
2F-K	1.49E+13	4.5E+12	1.13E+13	1.8E+12	1.24E+13	1.8E+12
Avg =	1.81E+13	1.5E+12	1.32E+13	7.2E+11	1.46E+13	6.8E+11
Std =	4.1E+12		3.0E+12		2.8E+12	

Summary of the Group-2 Back

Average fluence is $(0.95\pm0.07)\times10^{13}$ p/cm²

ID	Proton Fluence Be-7 (cm ⁻²)	Fluence ± err Be-7 (cm ⁻²)	Proton Fluence Na-22 (cm ⁻²)	Fluence ± err Na-22 (cm ⁻²)	EW Fluence (cm ⁻²)	EW Fluence ± err (cm ⁻²)
2B-L	1.86E+13	3.7E+12	1.03E+13	2.5E+12	1.28E+13	2.1E+12
2B-M	1.26E+13	5.9E+12	7.00E+12	2.4E+12	8.67E+12	2.5E+12
2B-N	8.17E+12	4.5E+12	5.35E+12	2.4E+12	6.19E+12	2.2E+12
2B-O	8.17E+12	5.6E+12	1.27E+13	2.4E+12	1.14E+13	2.4E+12
2B-R	7.80E+12	4.5E+12	7.89E+12	2.2E+12	7.86E+12	2.0E+12
2B-S	1.34E+13	4.8E+12	8.53E+12	2.2E+12	9.97E+12	2.1E+12
2B-U	1.49E+13	4.8E+12	8.65E+12	2.2E+12	1.05E+13	2.1E+12
2B-X	1.23E+13	4.1E+12	1.09E+13	1.8E+12	1.13E+13	1.7E+12
2B-Y	1.00E+13	4.8E+12	5.35E+12	2.2E+12	6.74E+12	2.1E+12
Avg =	1.18E+13	1.6E+12	8.53E+12	7.5E+11	9.49E+12	7.1E+11
Std =	3.6E+12		2.5E+12		2.3E+12	

Summary of the Group-3 Front

Average fluence is $(1.91 \pm 0.08) \times 10^{13}$ p/cm²

ID	Proton Fluence Be-7 (cm ⁻²)	Fluence ± err Be-7 (cm ⁻²)	Proton Fluence Na-22 (cm ⁻²)	Fluence ± err Na-22 (cm ⁻²)	EW Fluence (cm ⁻²)	EW Fluence ± err (cm ⁻²)
3F-A	3.31E+13	5.2E+12	2.23E+13	2.3E+12	2.52E+13	2.2E+12
ЗF-В	1.82E+13	5.2E+12	1.40E+13	2.5E+12	1.51E+13	2.3E+12
3F-C	2.04E+13	5.6E+12	1.41E+13	1.8E+12	1.59E+13	2.0E+12
3F-D	3.01E+13	5.9E+12	2.72E+13	2.5E+12	2.80E+13	2.5E+12
ЗF-Е	2.97E+13	4.5E+12	1.78E+13	2.3E+12	2.11E+13	2.1E+12
3F-F	1.86E+13	5.2E+12	1.22E+13	2.5E+12	1.40E+13	2.3E+12
3F-H	2.68E+13	5.9E+12	2.10E+13	2.7E+12	2.26E+13	2.5E+12
3F-I	2.08E+13	5.9E+12	1.49E+13	2.7E+12	1.65E+13	2.5E+12
ЗF-К	1.71E+13	4.8E+12	1.20E+13	2.0E+12	1.34E+13	2.0E+12
Avg =	2.39E+13	1.8E+12	1.73E+13	8.0E+11	1.91E+13	7.6E+11
Std =	6.1E+12		5.2E+12		5.3E+12	

Summary of the Group-3 Back

Average fluence is $(1.30\pm0.08)\times10^{13}$ p/cm²

ID	Proton Fluence Be-7 (cm ⁻²)	Fluence ± err Be-7 (cm ⁻²)	Proton Fluence Na-22 (cm ⁻²)	Fluence ± err Na-22 (cm ⁻²)	EW Fluence (cm ⁻²)	EW Fluence ± err (cm ⁻²)
3B-L	1.34E+13	4.5E+12	1.23E+13	2.2E+12	1.27E+13	2.1E+12
3B-M	1.89E+13	4.8E+12	1.37E+13	1.8E+12	1.55E+13	2.0E+12
3B-N	1.52E+13	4.8E+12	9.04E+12	2.3E+12	1.11E+13	2.2E+12
3B-O	1.23E+13	5.2E+12	7.25E+12	3.3E+12	8.93E+12	2.8E+12
3B-R	2.56E+13	4.8E+12	1.55E+13	2.3E+12	1.89E+13	2.2E+12
3B-S	1.26E+13	5.2E+12	1.16E+13	2.3E+12	1.19E+13	2.3E+12
3B-U	1.60E+13	5.6E+12	1.08E+13	2.2E+12	1.25E+13	2.4E+12
3B-X	2.08E+13	4.8E+12	1.09E+13	2.3E+12	1.42E+13	2.2E+12
3B-Y	1.39E+13	3.5E+12	9.55E+12	2.0E+12	1.10E+13	1.8E+12
Avg =	1.65E+13	1.6E+12	1.12E+13	7.7E+11	1.30E+13	7.5E+11
Std =	4.5E+12		2.5E+12		2.9E+12	

Error Weighted Average Fluence

Fluence for G1, G2 and G3 is 1.88, 1.192 and 1.61×10^{13} respectively

Group	Front EW Avg Fluence (cm ⁻²)	± Error (cm ⁻²)	Back EW Avg Fluence (cm ⁻²)	± Error (cm⁻²)	Average Fluence (cm ⁻²)	± Error (cm⁻²)
1	2.16E+13	7.2E+11	1.59E+13	6.9E+11	1.88E+13	5.0E+11
2	1.46E+13	6.8E+11	9.49E+12	7.1E+11	1.19E+13	4.9E+11
3	1.91E+13	7.6E+11	1.30E+13	7.5E+11	1.61E+13	5.3E+11

Ratio between the Be-7 and Na-22 Fluence

Consistent ratio between Be-7 and Na-22 fluence for both front and back AI foils

Group	Front Avg Fluence _{Be-7} (cm ⁻²)	Error (cm ⁻²)	Front Avg Fluence _{Na-22} (cm ⁻²)	Error (cm ⁻²)	Back Avg Fluence _{Be-7} (cm ⁻²)	Error (cm ⁻²)	Back Avg Fluence _{Na-22} (cm ⁻²)	Error (cm ⁻²)	Front Be-7/Na-22 Ratio	Error	Back Be-7/Na-22 Ratio	Error
1	2.41E+13	1.6E+12	2.08E+13	7.9E+11	1.82E+13	1.5E+12	1.51E+13	7.6E+11	1.16	0.09	1.21	0.12
2	1.81E+13	1.5E+12	1.32E+13	7.2E+11	1.18E+13	1.6E+12	8.53E+12	7.5E+11	1.37	0.14	1.38	0.22
3	2.39E+13	1.8E+12	1.73E+13	8.0E+11	1.65E+13	1.6E+12	1.12E+13	7.7E+11	1.38	0.12	1.47	0.18
								Avg =	1.30	0.07	1.35	0.10

Summary of Al Foil Data: Group-1

No clear beam shape observed in front and back AI foil data

Summary of Al Foil Data: Group-2

No clear beam shape observed in front and back AI foil data

Summary of Al Foil Data: Group-3

No clear beam shape observed in front and back AI foil data

Ratio between the Back and Front Fluence

Fluence at back decreases by 30%/33% from Be-7/Na-22 foil data Consistent with beam broadening due to multiple Coulomb scattering

Group	Front Avg Fluence Be-7 (cm ⁻²)	± Error (cm ⁻²)	Front Avg Fluence Na-22 (cm ⁻²)	± Error (cm ⁻²)	Back Avg Fluence Be-7 (cm ⁻²)	± Error (cm ⁻²)	Back Avg Fluence Na-22 (cm ⁻²)	± Error (cm ⁻²)	B/F Ratio Be-7	± Error	B/F Ratio Na-22	± Error
1	2.41E+13	1.6E+12	2.08E+13	7.9E+11	1.82E+13	1.5E+12	1.51E+13	7.6E+11	0.76	0.08	0.73	0.05
2	1.81E+13	1.5E+12	1.32E+13	7.2E+11	1.18E+13	1.6E+12	8.53E+12	7.5E+11	0.65	0.10	0.65	0.07
3	2.39E+13	1.8E+12	1.73E+13	8.0E+11	1.65E+13	1.6E+12	1.12E+13	7.7E+11	0.69	0.08	0.65	0.05
								Avg =	0.70	0.05	0.67	0.03

Proton Multiple Coulomb Scattering in LYSO

Multiple scattering angle after 57 mm LYSO is 47.4 mrad, or 2.7 deg, for 400 MeV protons

3/18/2022

Fluence Reduction after 57 mm LYSO

FWHM of beam is $26 + 2 \times 57 \times \tan(\theta) = 31.4$ mm after 57 mm LYSO, causing ~30% reduction

Proton dE/dx in LYSO

dE/dx of protons in LYSO crystals is calculated by using its density (7.4 g/cm3), Zeff (64.8) and the data of Sn(Z=50) and Pb (Z=82) shown in Fig. 27.3 in PDB Chapter 27 400 MeV protons loses 70 MeV via dE/dx after 57 mm LYSO: 330 MeV

Facility	E _k (MeV)	βγ	dE/dx in LYSO (Z _{eff} =64.8) (MeV g ⁻¹ cm ²)	dE/dx in LYSO (MeV/cm)	Dose Coeff* (rad/p/cm ²)	Dose @ 2.5E+13 (Mrad)	E in BTL (MeV)
FNAL	400	1.02	1.67	12.3	2.67E-08	0.67	3.7
LANL	800	1.56	1.33	9.8	2.12E-08	0.53	2.9
CERN	24000	26.56	1.49	11.0	2.38E-08	0.60	3.3

Cross-Sections at 330 and 400 MeV

AI(p,x)Na22 cross-sections: no significant change between 330 and 400 MeV AI(p,x)Be7: 2.6 \pm 0.4 mb at 330 MeV and 3.1 \pm 0.4 mb at 400 MeV, or ~20% at the back

Fig. 3 in the paper "R. Michel et. al., Nuclear Instruments and Methods in Physics Research B 129 (1997) 153-193"

Summary

The error weighted average fluence from eighteen foils at front and back is (1.88 ± 0.05) , (1.19 ± 0.05) and $(1.61\pm0.05) \times 10^{13}$ p/cm² respectively for the Group 1, 2 and 3, smaller than the required 2.5 \times 10¹³ p/cm². The fluence at back is 30%/33% lower than front for both Be-7 and Na-22, which is consistent with beam broadening due to multiple Coulomb scattering. The fluence at front is used as the nominal fluence. The fluence from the Be-7 data is 30% and 35% larger than that from Na-22 for both front and back foils, which appears due to different calibration. dE/dx caused cross-section variation can not explain the difference between the Be-7 and Na-22 data.

Because of the large counting error due to small foil mass, it is difficult to extract detailed beam profile from nine foils.

Acknowledgements: DOE HEP Award DE-SC0011925 and DE-AC02-07CH11359