Neutron Induced Photocurrent and Readout Noise for BTL LYSO+SiPM

Adi Bornheim, Chen Hu, Narvaez Lautaro, Nan Lu, Maria Spiropulu, Jason Trevor, Liyuan Zhang, Ren-Yuan Zhu

California Institute of Technology

November 13, 2019

BTL sensor meeting

Introduction

A Question from the Fermilab Director's Review

"Effect on time resolution related to the instantaneous TID (rad/hour). From your 25 kGy after 10 years, we can derive 2.5 kGy per year i.e., 0.5 Gy/hour (50 rad/hour). Measurement of assembled BTL with MIP during irradiation should be performed before going to further. The noise induced from the scintillating tile can deteriorate the timing resolution."

Plan: Experiments of Two Types

- Measurements for BTL sensors from selected vendors under the expected dose rate and the expected hadron flux: Radiation induced photocurrent and readout noise (RIN) measurements, following R. Mao *et al.*, Paper N32-4 and N32-5, *IEEE NSS Conference Record* (2009). Coincidence timing resolution (CTR) will also be measured.
- One total ionization dose (TID:y) and two total neutron/proton fluence (TF:n/p) experiments.

Introduction

- Previous reports:
 - RIN: y data by Chen Hu on Oct 02 BTL sensor meeting: <u>link</u> : *RIN:* y values show a consistent noise level at about thirtyish keV, which is negligible as compared to the 4.2 MeV MIP signal.
 - Characterization of 60 LYSO bars from 3 vendors for radiation damage tests by Chen Hu on Oct 16 BTL sensor meeting: <u>link</u>
- Today: Results for RIN:n
- CTR:y and CTR:n will follow soon

Particle Energy Spectra at LHC

FLUKA simulations: γ/n and charged hadrons peaked at MeV and several hundreds MeV respectively. RIN: γ and RIN:n, as well as CTR: γ and CTR:n are investigated at Caltech.

Radiation expected by CMS BTL

MTD TDR: assuming 5×10^{34} cm⁻²s⁻¹, 3,000 fb⁻¹ & a safety factor of 1.5 Radiation spec: λ_{in} <3 m⁻¹ for 4.8 Mrad, 2.5 x 10^{13} p/cm² & 2.9 x 10^{14} n_{eq}/cm²

CMS MTD	η	n _{eq} /cm²	n _{eq} Flux (cm ⁻² s ⁻¹)	Proton* /cm ²	p Flux (cm ⁻² s ⁻¹)	Dose (Mrad)	Dose rate (rad/h)
Barrel	0.00	2.48E+14	2.75E+06	2.2E+13	2.4E+05	2.7	108
Barrel	1.15	2.70E+14	3.00E+06	2.4E+13	2.6E+05	3.8	150
Barrel	1.45	2.85E+14	3.17E+06	2.5E+13	2.8E+05	4.8	192
Endcap	1.60	2.3E+14	2.50E+06	2.0E+13	2.2E+05	2.9	114
Endcap	2.00	4.5E+14	5.00E+06	3.9E+13	4.4E+05	7.5	300
Endcap	2.50	1.1E+15	1.25E+07	9.9E+13	1.1E+06	25.5	1020
Endcap	3.00	2.4E+15	2.67E+07	2.1E+14	2.3E+06	67.5	2700

Neutron flux

- Six ${}^{252}Cf$ neutron fluence : $8.2 \pm 0.8 \times 10^5 [1 \text{ MeV } n_{eq} \text{ cm}^{-2} \text{s}^{-1}]$, 10% uncertainly calculated by estimated position error of 1mm.
- Gamma dose rate is measured to be 2 rad/h , measured using a ionizing chamber

Experiment setup at Caltech

LYSO+SiPM setup and experiment procedures

- SiPM and LYSO:
 - Hamamatsu SiPM s14160-3015ps #3, breakdown voltage about 38 V, operating at 2 V over voltage, a gain of 2×10⁵
 - LYSO surrounded by a Teflon block
 - Air gap coupling between to SiPM and LYSO
- Irradiation at room temperature
- Measure the current readout from SiPM before, during and after neutron irradiation
 - SiPM only without LYSO
 - SiPM + LYSO, tested 4 crystals in the order of CPI-12, SIC-5, Tianle-2, Tianle-20
 - Remove LYSO, SiPM only

Current evolution

Summary of measured current readout from SiPM

The current is an average of all data points taken (100-170 data points)

Crystal ID	current before irrad. [µA]	current during irrad. [µA]	current after irrad. [µA]
CPI-12	0.39	10.00	0.56
SIC-5	0.58	9.75	0.76
Tianle-2	0.76	8.02	0.88
Tianle-20	0.83	9.38	1.04

• Clear observation of neutron induced readout noise: during irradiation,

readout current much higher than before/after irradiation

• Radiation damage effect accumulated on SiPM: readout out current higher after irradiation than before irradiation.

Expected current readout from SiPM at HL-LHC

- Gamma dose rate measured to be <= 2 rad/h. Subtract radiation induced noise from gamma to get the effect from neutron fluence
- Average current is scaled from the measured neutron-induced readout current (slide 10) to the neutron flux expected at three η regions, assuming the current has a linear dependency on the neutron flux.

Nan Lu, BTL sensor meeting

Calte

Neutron induced noise at HL-LHC

- Neutron induced noise σ estimated: about 7 keV, using LO measured by Chen Hu, <u>Slide10 of talk</u>
- Much smaller than γ induced noise of about 35 keV

 $time = 200 \ ns, \ e = 1.6 \times 10^{-19} \ C$

Nan Lu, BTL sensor meeting

Caltech

Summary

- Neutron induced readout noise:
 - measured to have an upper limit of 7 keV for BTL at HL-LHC
 - much smaller than gamma induced noise
- Both neutron and gamma radiation induced readout noise are

negligible compared to a MIP signal of 4.2 MeV.

Backup slides

Gamma-Ray Induced Noise

Hamamatsu SiPM s14160-3015ps @ -40 V with a gain of 2×10⁵ LYSO surrounded by a Teflon block and coupled to SiPM with an air gap was Irradiation @ 120, 185 and 250 rad/h. LO in 200 ns gate.

Negligible readout noise at 35 keV as compared to 4.2 MeV MIP signal.

Crystal ID	Corrected SiPM L.O. (p.e./MeV)*	Dose rate (rad/h)	Dark cur. before irrad. (nA)	Photo cur. (µA)	Dark cur. 20s after irrad. (nA)	F (p.e./s/rad/hr)	σ (keV)
CPI-12	1609	120	81	296	108		33.3
		185	87	411	108	7.19×10 ⁷	
		250	107	561	159		
SIC-5	1619	120	27	259	125		32.7
		185	103	429	288	7.01×10 ⁷	
		250	230	565	460		
Tianle-2	1336	120	28	221	177		35.6
		185	50	328	273	5.65×10 ⁷	
		250	102	452	330		
Tianle-20	1483	120	27	246	101		34.1
		185	45	388	153	6.38×107	
		250	71	497	191		

* Corrected by PDE/QE, wrapping and geometry

https://indico.cern.ch/event/849043