

Characterization of Sixty LYSO Bars from Three Vendors for Radiation Damage Tests

Adi Bornheim, <u>Chen Hu</u>, Nan Lu, Maria Spiropulu, Jason Trevor, Liyuan Zhang and Ren-Yuan Zhu

California Institute of Technology

October 16, 2019

Presented in the CMS MTD Barrel Sensor Meeting at CERN

LYSO Bars from Three Vendors

CPI Wrapped with ESR Wrapped with AI SIC SIC						
ID	Dimension (mm ³)	#	Polishing			
CPI LYSO:Ce-1,19	3.12x3.12x57	19	All faces			
SIC LYSO:Ce-1,20	3.12x3.12x57	20	All faces			
Tianle LYSO:Ce-1,20	3.12x3.12x57	20	All faces			
All sample	es received on Aug 5 th ,	2019 (Mon	day)			

Experiments

 Properties measured at room temperature : Transmittance, PHS, LO & Decay kinetics

10/16/2019

PL & XEL Measurement

Photo-luminescence measured with $\theta = 10^{\circ}$ without internal absorption, while XEL with internal absorption

PL/XEL Spectra

PL/XEL peaked at 405/420 nm without/with internal absorption

10/16/2019

Transmittance Measurement

Longitudinal transmittance (LT) measured by a Hitachi U3210 spectrophotometer with a Φ2.8 mm aperture inserted in the light path. The systematic uncertainty is 0.5%.

U3210 Large Sample Compartment

10/16/2019

Sys. Uncertainties: EWLT & AC

The systematic uncertainty of EWLT is 0.5%, determined by the rms value of ten EWLT measurements, corresponding to 0.3 m⁻¹ for absorption coefficient

Transmittance: CPI and SIC

SIC LYSO shows a better EWLT with a poorer consistency

	ID	C	PI	SIC		
		EWLT (%)	T% @ 420 nm	EWLT (%)	T% @ 420 nm	
	1	58.8	76.5	60.1	72.6	
	2	60.0	77.9	65.7	80.6	
	3	57.1	74.6	65.9	79.2	
	4	58.2	75.7	66.8	80.5	
	5	55.2	71.8	65.1	78.5	
	6	59.7	78.2	68.0	82	
	7	58.6	76.6	64.4	79.2	
	8	59.2	77.1	66.3	80.8	
	9	56.7	73.8	65.5	79.9	
	10	60.0	78.2	61.6	75.1	
	11	59.8	77.9	66.9	81.8	
	12	57.1	74.4	65.1	79.7	
	13	57.7	75.0	64.1	78.0	
	14	58.6	76.5	65.7	79.7	
	15			66.1	80.4	
	16	wran	ned	65.3	80.1	
	17	wiap	peu	63.3	77.1	
	18	sam	oles	66.2	80.6	
	19			65.2	80.1	
	20			67.0	81.8	
	Ave	58.3	76.0	65.2	79.4	
	RMS	1.4	1.8	1.8	2.2	
10/16/20	RMS/Ave	Presented by Che	n Hu in the CIMSMTD Barre	el Sensor Meeting	2.8%	

Transmittance: Tianle

Two Tianle LYSO groups with different doping The 2nd group shows a better consistency

ID	Tiai	nle-1		Tianle-2		
	EWLT (%)	T% @ 420 nm	עו	EWLT (%)	T% @ 420 nm	
1	56.1	72.5	11	62.7	79.4	
2	56.3	72.8	12	61.6	77.8	
3	58.6	75.9	13	61.9	78.2	
4	58.5	75.7	14	62.4	78.4	
5	59.8	77.3	15	63.5	80.0	
6	58.1	74.9	16	59.9	75.6	
7	59.2	76.4	17	62.3	78.6	
8	57.8	74.9	18	64.0	80.6	
9	58.7	76.0	19	62.3	78.8	
10	59.3	76.4	20	62.7	79.2	
Ave	58.2	75.3	Ave	62.3	78.7	
RMS	1.2	1.5	RMS	1.1	1.3	
RMS/Ave	2.0%	2.0%	RMS/Ave	1.7%	1.6%	

Summary: Transmittance

Cutoff wavelength is less affected by surface quality The 2nd Tianle group shows the best consistency

Cutoff Wavelength vs. EWLT

90% correlation between the cutoff wavelength and the EWLT values

Both affected by the Ce³⁺ doping level.

EWLT affected more by surface quality.

Light Output Measurement

Light output measured by a Hamamatsu PMT R1306 and a LeCroy 3001 QVT MCA with coincidence triggers from a Na-22 source. LYSO bars surrounded by a Teflon block and coupled to PMT with an air-gap.

TECHNOLOC

Pulse Height Spectra

Teflon block/cap and air gap are chosen for stability

Systematic Uncertainty: LO

Systematic uncertainties determined for 200 ns gate

0.7% and 1.7% respectively for LO and ER

LO, F/T & Decay Time: 15 CPI

ID	200ns E.R. (%)	50ns L.O. (p.e./MeV)	200ns L.O. (p.e./MeV)	2000ns L.O. (p.e./MeV)	LO (50) /LO (2000)	Decay Time (ns)	LO (50)/τ
1	12.6	804	1089	1104	73%	38	21.2
2	13.0	782	1103	1124	70%	42	18.6
3	13.7	779	1073	1089	72%	39	20.0
4	12.3	797	1106	1129	71%	40	19.9
5	12.8	789	1092	1115	71%	40	19.7
6	13.1	772	1057	1080	71%	39	19.8
7	12.3	784	1091	1111	71%	40	19.6
8	12.5	753	1068	1090	69%	42	17.9
9	12.7	788	1098	1108	71%	40	19.7
10	13.0	799	1111	1132	71%	40	20.0
11	12.2	799	1107	1124	71%	40	20.0
12	13.1	791	1084	1097	72%	39	20.3
13	12.7	757	1073	1098	69%	42	18.0
14	13.6	772	1058	1073	72%	39	19.8
15	13.5	756	1056	1076	70%	41	18.4
Ave	12.9	781	1084	1103	71	40	19.5
RMS	0.5	16	18	19	1.1	1.1	0.9
RMS/Ave	3.5%	2.0%	1.7%	1.7%	1.5%	2.9%	4.4%

LO, F/T & Decay Time: 20 SIC

ID	200ns E.R. (%)	50 ns L.O. (p.e./MeV)	200ns L.O. (p.e./MeV)	2000ns L.O. (p.e./MeV)	LO (50) /LO (2000)	Time Decay (ns)	LO (50)/τ
1	14.0	848	1194	1220	70%	42	20.2
2	13.4	802	1139	1156	69%	42	19.1
3	13.5	799	1136	1158	69%	42	19.0
4	13.6	786	1114	1133	69%	42	18.7
5	13.9	824	1146	1162	71%	40	20.6
6	13.8	797	1133	1154	69%	42	19.0
7	13.9	806	1105	1121	72%	39	20.7
8	12.7	901	1220	1234	73%	38	23.7
9	13.5	794	1070	1088	73%	38	20.9
10	13.5	875	1153	1171	75%	36	24.3
11	13.0	846	1195	1218	69%	42	20.1
12	12.9	806	1138	1159	70%	42	19.2
13	13.2	819	1132	1150	71%	40	20.5
14	13.1	865	1167	1184	73%	38	22.8
15	12.9	838	1118	1134	74%	37	22.6
16	13.2	793	1122	1142	69%	42	18.9
17	12.8	818	1138	1157	71%	40	20.5
18	14.1	826	1127	1143	72%	39	21.2
19	12.9	855	1153	1174	73%	38	22.5
20	12.9	837	1123	1141	73%	37	22.6
Ave	13.3	827	1141	1160	71	40	20.9
RMS	0.4	30	33	34	1.8	2.0	1.7
RMS/Ave	3.2%	2.9%	2.9%	2.9%	2.6%	5.1%	8.0%

LO, F/T & Decay Time: 10 Tianle-1

ID	200ns E.R. (%)	50 ns L.O. (p.e./MeV)	200ns L.O. (p.e./MeV)	2000ns L.O. (p.e./MeV)	LO (50) /LO (2000)	Decay Time (ns)	LO (50)/τ
1	13.5	719	932	946	76%	35	20.5
2	14.7	712	915	928	77%	34	20.9
3	14.2	705	915	931	76%	35	20.1
4	13.7	700	926	944	74%	36	19.4
5	14.1	713	902	913	78%	33	21.6
6	14.0	714	921	934	76%	34	21.0
7	13.4	693	908	922	75%	35	19.8
8	13.9	712	900	910	78%	32	22.3
9	14.3	704	913	923	76%	34	20.7
10	13.3	712	915	934	76%	34	20.9
Ave	13.9	708	915	929	76	34	20.7
RMS	0.4	7.4	9.4	11	1.1	1.1	0.8
RMS/Ave	3.0%	1.0%	1.0%	1.2%	1.5%	3.1%	3.8%

LO, F/T & Decay Time: 10 Tianle-2

ID	200ns E.R. (%)	50 ns L.O. (p.e./MeV)	200ns L.O. (p.e./MeV)	2000ns L.O. (p.e./MeV)	LO (50) /LO (2000)	Decay Time (ns)	LO (50)/τ
11	12.9	764	1053	1083	71%	40	19.1
12	13.3	755	1033	1063	71%	40	18.9
13	12.8	771	1053	1079	71%	39	19.8
14	13.2	751	1061	1098	68%	42	17.9
15	13.3	733	1029	1058	69%	42	17.5
16	13.0	746	1044	1072	70%	41	18.2
17	13.3	744	1044	1076	69%	42	17.7
18	12.9	765	1090	1121	68%	43	17.8
19	12.8	743	1021	1051	71%	40	18.6
20	13.1	763	1050	1077	71%	40	19.1
Ave	13.1	754	1048	1078	70	41	18.4
RMS	0.2	12	18	19	1.1	1.2	0.7
RMS/Ave	1.5%	1.5%	1.7%	1.8%	1.5%	3.0%	3.9%

Summary: LO and ER

SIC crystals show the highest LO but the poorest rms

Tianle-1: F/T ratio = 76% and decay time = 34 ns CPI, SIC, and Tianle -2: F/T ratio = 71% and decay time = 40 ns

Correlations: LO vs. EWLT

A better correlation after removing CPI samples

LO vs. Cutoff Wavelength

Cutoff wavelength better than EWLT because of less surface dependence

Presented by Chen Hu in the CMS MTD Barrel Sensor Meeting

Summary

- Emission, transmittance, light output and decay kinetics of LYSO bars of 3.12x3.12x57 mm³ from three vendors were measured. Systematic uncertainties of 0.5%, 0.3 m⁻¹, 0.7%, 1.7%, 1.5%, 3% and 4% were determined for EWLT, AC, LO, ER, F/T, decay time (τ) and LO(50ns)/τ, respectively.
- While crystals from different vendors show slightly different performance, the overall consistency is good for each vendor and each growth recipe. The Tinle-1 samples show the shortest decay time (34 ns) and the highest LO(50 ns)/τ (76) ratio although the lowest LO(50 ns).
- Correlations are observed between EWLT, cut-off wavelength and light output. The cut-off wavelength is found to be affected less by the crystal surface quality.
- The data presented will be used in the radiation damage tests for RIN: y, RIN: n, TID: y, TF: n, RIN: p and TF: p.