

Gamma-Ray Induced Photocurrent and Readout Noise for BTL LYSO+SiPM

Adi Bornheim, <u>Chen Hu</u>, Nan Lu, Maria Spiropulu, Jason Trevor, Liyuan Zhang and Ren-Yuan Zhu

California Institute of Technology

October 1, 2019

Presented in the CMS MTD Barrel Sensor Meeting at CERN

Introduction

A Question from the Fermilab Director's Review

"Effect on time resolution related to the instantaneous TID (rad/hour). From your 25 kGy after 10 years, we can derive 2.5 kGy per year i.e., 0.5 Gy/hour (50 rad/hour). Measurement of assembled BTL with MIP during irradiation should be performed before going to further. The noise induced from the scintillating tile can deteriorate the timing resolution."

Plan: Experiments of Two Types

- Measurements for BTL sensors from selected vendors under the expected dose rate and the expected hadron flux: Radiation induced photocurrent and readout noise (RIN) measurements, following R. Mao *et al.*, Paper N32-4 and N32-5, *IEEE NSS Conference Record* (2009). Coincidence timing resolution (CTR) will also be measured.
- One total ionization dose (TID:y) and two total neutron/proton fluence (TF:n/p) experiments.

Reported today is the RIN:y data Results for RIN:n, CTR:y and CTR:n will follow soon

Radiation Expected by CMS BTL

MTD TDR: assuming 5×10^{34} cm⁻²s⁻¹, 3,000 fb⁻¹ & a safety factor of 1.5 Radiation spec: λ_{in} <3 m⁻¹ for 4.8 Mrad, 2.5 x 10^{13} p/cm² & 2.9 x 10^{14} n_{eq}/cm²

CMS MTD	η	n _{eq} /cm²	n _{eq} Flux (cm ⁻² s ⁻¹)	Proton* /cm ²	p Flux (cm ⁻² s ⁻¹)	Dose (Mrad)	Dose rate (rad/h)
Barrel	0.00	2.48E+14	2.75E+06	2.2E+13	2.4E+05	2.7	108
Barrel	1.15	2.70E+14	3.00E+06	2.4E+13	2.6E+05	3.8	150
Barrel	1.45	2.85E+14	3.17E+06	2.5E+13	2.8E+05	4.8	192
Endcap	1.60	2.3E+14	2.50E+06	2.0E+13	2.2E+05	2.9	114
Endcap	2.00	4.5E+14	5.00E+06	3.9E+13	4.4E+05	7.5	300
Endcap	2.50	1.1E+15	1.25E+07	9.9E+13	1.1E+06	25.5	1020
Endcap	3.00	2.4E+15	2.67E+07	2.1E+14	2.3E+06	67.5	2700

Particle Energy Spectra at LHC

FLUKA simulations: y/n and charged hadrons peaked at MeV and several hundreds MeV respectively. RIN:y and RIN:n, as well as CTR:y and CTR:n are investigated at Caltech.

Presented by Chen Hu in the CMS MTD Barrel Sensor Meeting

10/1/2019

y-Ray Induced Photocurrent

Hamamatsu SiPM s14160-3015ps @ -40 V, LYSO surrounded by a Teflon block with an air gap coupling were irradiated at three positions

F is defined as the radiation induced photoelectron number per second, determined from the photocurrent in the SiPM at different γ -ray dose rate.

Hamamatsu SiPM operated with 2 V over voltage has a gain of 2×10^5 .

Four typical LYSO samples from CPI, SIC, Tinle-1 and Tinle-2 were tested

(MeV)

Photocurrent: CPI and SIC

Consist photocurrent and after glow observed

Photocurrent: Tinle-1 & -2

Consist photocurrent and after glow observed

Gamma-Ray Induced Noise

Dose rates at each position determined from a combined fit.

> Good linearity observed for all samples.

F values obtained from linear fits are larger for LYSO with higher LO.

Correlations: F values vs. LO

Excellent correlation shows that the observed photocurrent is entirely due to scintillation light

Presented by Chen Hu in the CMS MTD Barrel Sensor Meeting

Gamma-Ray Induced Noise

Hamamatsu SiPM s14160-3015ps @ -40 V with a gain of 2×10⁵. LYSO surrounded by a Teflon block and coupled to SiPM with an air gap was Irradiation @ 120, 185 and 250 rad/h. LO in 200 ns gate.
Negligible readout noise at 35 keV as compared to 4.2 MeV MIP signal.

Crystal ID	Corrected SiPM L.O. (p.e./MeV)*	Dose rate (rad/h)	Dark cur. before irrad. (nA)	Photo cur. (µA)	Dark cur. 20s after irrad. (nA)	F (p.e./s/rad/hr)	σ (keV)
CPI-12	1609	120	81	296	108		33.3
		185	87	411	108	7.19×10 ⁷	
		250	107	561	159		
SIC-5	1619	120	27	259	125		32.7
		185	103	429	288	7.01×10 ⁷	
		250	230	565	460		
Tianle-2	1336	120	28	221	177		35.6
		185	50	328	273	5.65×10 ⁷	
		250	102	452	330		
Tianle-20	1483	120	27	246	101		34.1
		185	45	388	153	6.38×10 ⁷	
		250	71	497	191		

* Corrected by PDE/QE, wrapping and geometry

Presented by Chen Hu in the CMS MTD Barrel Sensor Meeting

Correlation: Dark Currents before vs. after

Good correlation shows that the dark current is affected by the afterglow after irradiation

Summary

An RIN: vexperiment was carried out for LYSO samples surrounded by a Teflon block and coupled to SiPMs with an air gap. Four LYSO samples from three vendors were tested under three dose rates. While these LYSO samples are not identical, the RIN: values show a consistent noise level at about thirtyish keV, which is negligible as compared to the 4.2 MeV MIP signal.

- A new pair of Cf-252 sources is being added to the existing two pairs. An RIN:n experiment will be carried out in October.
- CTR:y and CTR:n experiments will be carried out in Fall.
- A TID: y experiment is also planned in Fall.

Depending on a crane reparation, a TF:n experiment may start at LANSCE in Fall, 2019.