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Abstract. Future HEP experiments at the energy and intensity frontiers require fast and
ultrafast inorganic scintillators with excellent radiation hardness to face the challenges of
unprecedented event rate and severe radiation environment. \We report recent progress in fast
and ultrafast inorganic scintillators for future HEP experiments. Examples are LY SO crystals
and LUAG ceramics for an ultra-compact shashlik sampling calorimeter for the HL-LHC and
the proposed FCC-hh, and yttrium doped BaF, crystals for the proposed Mu2e-I1 experiment.
Applications for GHz hard X-ray imaging will also be discussed.

1. Introduction

Inorganic scintillators are widely used in the high energy physics (HEP) experiments. Fast and
radiation hard scintillators are required to survive the unprecedented harsh radiation environment
expected by future HEP experiments at the energy frontier, such as the HL-LHC and Future Hadron
Circular Collider (FCC-hh), where up to 500 Grad and 5x10*8 n.i/cm? of one MeV equivalent neutron
fluence are expected for the forward calorimeter (EMF, HF) [1]. Ultrafast scintillators are required for
future HEP experiments at the intensity frontier, such as Mu2e-I1 [2], to mitigate pileup. Table I lists
optical and scintillation properties of fast and ultrafast inorganic scintillators.

Table 1. Scintillation performance of fast and ultrafast inorganic scintillators.
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Cerium doped lutetium yttrium oxyorthosilicate (Luxi—xY2xSiOs:Ce or LYSO) and lutetium
aluminium garnet (LusAlsO12 or LUAG:Ce) show high stopping power, high light output, fast decay
time and good radiation hardness against ionization dose and hadrons. LYSO crystals are being used
to construct a barrel timing layer (BTL) for the CMS upgrade for the HL-LHC, where 5 Mrad
ionization dose, 3x10® charged hadrons/cm? and 3x10 1 MeV equivalent neutrons/cm? are expected
[3]. They were also proposed for an ultra-compact, radiation hard shashlik calorimeter for the HL-
LHC [4]. Yttrium doped barium fluoride crystals (BaF.:Y) have an ultrafast scintillation component
with 0.5 ns decay time and a suppressed slow component [5]. An ultrafast BaF.:Y total absorption
calorimeter is considered by the Mu2e-11 experiment [2]. Ultrafast inorganic scintillators may also find
applications for GHz hard X-ray imaging [6].

2. Bright, fast and radiation hard LY SO:Ce crystals and LUAG:Ce ceramics

Fig.1 shows the radiation induced absorption coefficient (RIAC) values as a function of (1) integrated
dose, (2) proton fluence, and (3) 1 MeV equivalent neutron fluence respectively for LYSO crystal
samples. We found that damage induced by protons in LYSO is an order of magnitude larger than that
from neutrons, which is due to ionization energy loss in addition to displacement and nuclear breakup.
The results show that LYSO:Ce crystals satisfy CMS BTL specification of RIAC < 3 m? after 4.8
Mrad, 2.5x10" p/cm? and 3x10 neg/cm? [3].
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Figure 1. RIAC in LYSO are shown as a function of (1) ionization dose, (2) protons, and (3) neutrons.

Fig. 2 show the RIAC values as a function of (1) 1 MeV equivalent neutron fluence and (2) proton
fluence for LUAG:Ce ceramics and compared to LYSO:Ce crystals. We found that LUAG:Ce ceramics
shows a factor of two better radiation hardness than LYSO crystals up to 6.7x10%° ne/cm? and
1.2x10% p/cm?, so are promising for the FCC-hh. Fig. 2(3) shows that Ca?* co-doping improves the
Fast/Total (F/T) ratio, defined as the ratio between the light output in 200 ns and 3,000 ns, to 90%.
Because of its excellent radiation hardness [7] and a good match between its excitation and the
LYSO:Ce emission [8], LUAG:Ce ceramics may also serve as an effective wavelength shifter for
LYSO:Ce crystals for the RADICAL concept proposed for the HL-LHC and FCC-hh [9].
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Figure 2. (1-2) Radiation hardness of LUAG:Ce ceramics and (3) slow suppression by co-doping.



3. Ultrafast BaF,:Y crystals

It is well known that BaF; crystals have an ultrafast scintillation component with sub-ns decay time
peaked at 220 nm, and a 600 ns slow component peaked at 300 nm with much higher intensity, which
would cause pileup in a high rate environment. It is also known that the slow component in BaF,
crystals can be suppressed either by rare earth doping in crystals [5] or by using a solar blind
photodetector [10]. Fig. 3(1) shows nine BaF; cylinders of ®18x21 mm?® grown at BGRI with different
Y3* doping levels. Fig. 3(2) shows the X-ray excited emission (XEL) peaks at 220 and 300 nm for the
fast and slow light, showing a reduced slow light intensity for an increased yttrium doping level, while
the intensity of the fast emission is maintained. Fig. 3(3) shows the transmittance spectra (solid lines)
measured along 21 mm light path for all samples. Fig. 3(4) shows light output as a function of
integration time for these samples, confirming a reduced slow component and consistent fast
component. Figs. 3(5) and (6) show the response of BaF. and BaF2:Y to septuplet X-ray bunch with
2.83 ns bunch spacing, providing a proof of principle for the ultrafast inorganic scintillator-based front
imager for GHz hard X-ray imaging [11]. BaF2:Y crystals of large size is under development. While
yttrium doping in BaF. crystals increases its F/S ratio significantly, a solar-blind photodetector is also
needed to minimize the pileup for a BaF,:Y crystal-based ultrafast calorimeter for Mu2e-11 [12].

m__ R )

T T T T T r
12000["__ BGRI BaF -pure Xeray exclled ] BGRI BaF,’Y Cylinders & 18x21 mm®

— BGRI BaF,¥1.0% lumineszence 951 Light Path = 21 mm

BGRIBaF, 2 0% Amptek Eclipse-Il
— BGRIBaF,:Y3.0% 25kV. B0pA
— BGRIBaF,Y5.0%

T EwT
¥(at%) 220nm  300nm]

10000 |- g s

1.5% 2.0%

— 0% 881% 89.9%
— 1.0% 844%  895% ]
20% 825% 87 1%

30% 850% 884%-

— 50% B844%  88.3% |

Transmittance (%)
=

F Emission

« Theoretical limit

2000 Y
3 A of transmittance

3D0 2;5 2;0 2;5 360 JéS 3.%0 3;5 400 5300 2;0 360 3.':0 460 450
Wavelength (nm} Wavelength {nm)

0 p— ©

35 mi
04 | Photek MCP-PMT210, HV = 000 v
Tektronix DPO 71254C

SIC BaF,-1 50x50:5 mm®
0z | B s [ i

SIC BaF,-1 50! Photek MCP-PMT210, HV = -5000 V'

505 my
3 nme{:PPMTanv -5000 v E sr
[ Tektronix DPO 71254C

Tektronix DPO 71254C

FE RS 200 Gas01a ] 53303 mm
Photek MCP-PRT210, HY = 4850V
F Tekironix DPO 71254C

SIC LYS:CE 150210-° 1 19x19 2 My
-5000 v

[ Photek MCP-PMT210, H .
Tektronix DPO 71254C 1r

Pulse Height (V)

o =
@ = N O W = ;e N A BO

Pulse Height (V)

1 1 1 1 L 1 L 1 1 B C 1 1 L 1 1 E
] 1000 2000 3000 4000 280 200 320 340 360 380 400 278 280 285 290 265 300 305
Time (ns) Time (ns) Time (ns)

Figure 3. (1-4) Slow component suppression in a set of BaF.:Y crystals, and (5-6) ultrafast X-ray
imaging of BaF; and BaF-:Y crystals to septuplet X-ray bunch with 2.83 ns bunch spacing,.

4. Summary
Bright, fast and radiation hard LYSO:Ce and LUAG:Ce survive up to 10* p/cm? and 10%® ne/cm?, so
are promising materials for such a severe radiation environment expected by future HEP experiments
at the energy frontier. R&D is on-going to develop these materials for an ultra-compact, radiation hard
RADICAL concept for the HL-LHC and the proposed FCC-hh

Undoped BaF; crystals of large size (20 cm) provide ultrafast light with 0.5 ns decay time and a
good radiation hardness up to 130 Mrad. Yttrium doping suppresses its slow light and promises an
ultrafast inorganic scintillator with much reduced slow contamination. R&D is on-going to develop
both yttrium doped BaF, crystals of large size and solar-blind VUV photodetectors for future HEP
experiments at the intensity frontier, such as Mu2e-II.
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