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ABSTRACT

Future HEP experiments present stringent challenges to inorganic scintillators in both fast timing response and radiation
tolerance. This paper reports recent progress in developing ultrafast inorganic scintillators with sub-ns decay time for
future precision timing detectors and high-rate experiments. Performance of fast and ultrafast crystals with mass
production capability are compared to Csl crystals which are used for the Mu2e calorimeter. Examples are LYSO:Ce,
BaF, and BaF.:Y, which are considered for Mu2e-Il. Crystal radiation hardness against gamma-rays and hadrons is
reported. Current status and development effort for the BaF,:Y crystals are discussed.

INTRODUCTION

Inorganic scintillators are widely used in HEP experiments to construct electromagnetic calorimeters, providing the best
possible energy resolution and position resolution, good electron and photon identification and reconstruction efficiency.
The recent DOE report on basic research needs for HEP instruments [1] points out that ultrafast inorganic scintillators with
good radiation hardness are required for future HEP experiments at the energy and intensity frontiers to mitigate severe
radiation environment up to 100 Mrad and 3x10%6 neg/cm? of one MeV equivalent neutron fluence [2] and high event rate
and pileup [3], respectively. Development of ultrafast heavy crystals with sub-nanosecond decay time thus is important to
break the ps timing barrier for time of fight (TOF) systems and for ultrafast calorimetry. Table 1 lists optical and
scintillation properties for some fast and ultrafast inorganic scintillators with mass production capability. Also listed in
Table 1 is the figures of merit for the TOF application, which is the light yield (LY) in the 1% ns and the ratio between the
LY in the 1% nanosecond and the total LY.

Table 1 Optical and scintillation properties of fast and ultrafast inorganic scintillators with mass-production capability

7 2 T S N Y7

Density (g/cm?) 4.51 4.89 4.89 5.23 3.86 5.29
Melting points (°C) 621 2050 1280 1280 722 858 783
X, (em) 1.86 1.14 2.03 2.03 1.88 2.81 1.88
Ry (cm) 3.57 2.07 3.10 3.10 2.88 3.7 2.85
A (cm) 39.3 20.9 30.7 30.7 30.8 37.6 30.4
Zo 54.0 64.8 51.6 51.6 46.2 473 456
dE/dX (MeVicm) 5.56 9.55 6.52 6.52 6.81 5.7 6.90
Ageax® (NM) a0 420 320 290 371 335 356
Refractive Index® 1.95 1.82 1.50 1.50 19 1.9 19
Normalized 4.2 42 17 15
Light Yielda< 13 100 48 48 o 49 =
Total Light yield
e 1,650 30,000 13,000 2,000 30,000 19,000 46,000
o 30 600 600 570
Decay time® (ns) A 40 e e 17 o 20
LY in 1%t ps
(photons/MeV) 100 740 1,200 1,200 1,700 610 1,500
15tns LY/Total LY (%)  6.1% 2.5% 9.2% 60% 5.7% 3.2% 3.3%
Comment  ciidfate Candidate Candidate Candidate MYOTOScopic  hygroscopic  hygroscopic

2 top/bottom row: slow/fast component: ? at the emission peak: © normalized to LYSO:Ce.
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Cerium doped lutetium yttrium oxyorthosilicate (Lui— Y 2xSiOs:Ce or LYSO:Ce) shows high stopping power, high light
output, fast decay time and good radiation hardness against both ionization dose and hadrons [4]. LYSO:Ce thus is now
used to construct the Barrel Timing Layer (BTL) for the CMS experiment at the HL-LHC and was one of the original
choices of the Mu2e experiment at Fermilab. The high cost of LYSO:Ce caused by raw material Lu,O3 and high melting
point, however, limited its use. The Mu2e experiment is building an undoped Csl total absorption calorimeter [5] and
considers an ultrafast total absorption calorimeter for its upgrade [3]. Inorganic scintillator with core valence transition,
such as BaF, features with its energy gap between the valence band and the uppermost core band less than the fundamental
bandgap, allowing an ultrafast decay time. By using its ultrafast scintillation component with 0.5 ns decay time, a BaF;
calorimeter promises an ultrafast calorimeter for future HEP experiments. Yttrium doped barium fluoride (BaF:Y) shows
a significantly reduced slow component and radiation-induced readout noise [4], so is promising for Mu2e-1l. R&D is on-
going in collaboration with crystal producers to develop BaF,:Y crystals of large size [6]. Other bright and fast crystals,
such as CsF, CeBrs, LaClz:Ce and LaBrs:Ce, are hygroscopic, presenting a technical challenge for calorimeter construction.
It is also interesting to note that ultrafast inorganic scintillators listed in Table 1 may also be used beyond HEP for e.g.,
GHz hard X-ray imaging for future free electron laser facilities [7].

RADIATION HARDNESS

Radiation hardness against gamma-rays was measured for various crystals of large size up to 340 Mrad [8]. Fig. 1 shows
the normalized emission weighted longitudinal transmittance (EWLT, top) and the normalized light output (LO, bottom)
as a function of the integrated dose for four Csl (left), six LYSO/LSO/LFS (middle) and three BaF; (right) crystals of large
size from various vendors. The EWLT was calculated according to

[ T)Em(A)dA

EWLT =
[ Em(0)da

€y

where T(Z) and Em(Z) are transmittance and emission spectra. The EWLT value provides a numerical representation of the
transmittance over the entire emission spectrum.

The results show that Csl survives the Mu2e radiation environment where an ionization dose up to a few tens krad, but not
1 Mrad expected by Mu2e-Il. Improving on the decay time and radiation hardness of pure Csl is necessary to meet the
more stringent requirements of Mu2e-11. Undoped BaF; crystals show saturated damage from 10 krad to 100 Mrad after
an initial loss, so are more radiation hard than Csl at a large integrated dose. In conclusion, LYSO:Ce and BaF- survive
the radiation environment expected by MuZ2e-I1.
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Figure 1. The normalized EWLT (top) and light output (LO) are shown as a function of the integrated dose for four Csl (left), six
LYSO/LSO/LFS (middle) and three BaF: (right) crystals from various vendors.

Figure 2 shows transmittance spectra (left), light output as a function of integration time (middle) and normalized light
output (right) as a function of 800 MeV proton fluence for six BaF, plates of 25x25x5 mm? and compared to six LYSO:Ce



plates of 10x10x3 mm3 and six PWO plates of 25x25x5 mm?. Both LY SO and BaF; plates show more than 80% of light
output after 10 p/cm?

100 FSic LY5041 1010z mm® J ! ] T SIG LYSO4S 10103 e ! r ! 1]
Proton Fluence: 9.7:10" piem® PMT:R1306, Two layers Tyvek, Grease LO(200) 4637 4213 (31%) i EXF eriment 7324
5000 - B PP I P e
EVILT s £ = 1 H |
S0F__ Before IR 79.2% Enaskn 1 pFlumce. LO=Agqn(1e) = I
__Proton IR 76.7% Ly B L R B T 1 s O -
« Thearetical limit % fBi w‘: 2 422: 32 5
o= of transmiittance s o i i
= Tt o M et 80— ————+ B wspeieiiepit —
~— 100 SICBaF,5 25x25x5 mm 2= e ad ] SIC BaF 5 25x25x5 mm® LO(S0): 340  310(91%) =} £ H
8 " 2 @ PMT:R2059, Two layers Tyvek, Grease LO(2500)_ 1223 1185 (97%) O
c Proton Fluence: 9.7x10™ p/icm & E
© Emission EWLE: 1000 LO= Aga, (1 Fluence: 7| O Y
£ sof —BebreR 0% | 3 2 }7 i . - A :
g —_ Neutron IR 80.4% = A A £ Sl Lo i
a = Theortical imi 3 Before|R 250 1000 665 o A ]
[} G, 1 N ! "~y oftransmittance | | i f L After IR (244 1953 1550 " = ﬁ
b 0 7P i 5 t t t 1 = of t t t © 1
= 100 |- SIC PWO-23 25x25x5 mm 1 5 SIG PHWO, 18 25x25x5 mm® £ i :
Proton Fluence: 8 7x10" picm® 3 49T omr. R2059, Twe layers Tyvek, Grease LO00) 314 109(35%| = 25[ i fovdod -
oy se e e e oo oo ' S 7 O LYSO Plaies 10x10x3 m’
p-Fluence: LO=A+A(1-e2) i 4
50 Before IR 59.1% 20l 1o em? o ):f? 5 § [i] BaF Plates26x25x5 mm’ \
— Proton IR~ 52.4 Emission BefprelR 235 76 30 i
-FT:‘eore«_ma\ Tt - R T Y 22 2 0 P\_N ) B ates. 25) qéjnm i iz
of iransmitiance L i i e ol i i L I P k] H HEHE
900 250 300 350 400 450 500 550 0 1000 2000 3000 o™ 10°
. 2
Wavelength (nm) Time (ns) Proton Fluence (p/cm?)

Figure 2. Transmittance spectra (left) and light output as a function of integration time (middle) and light output (right) are shown
as a function of 800 MeV proton fluence for six BaF2 plates of 25x25x5 mm? and compared to six LYSO:Ce plates of 10x10x3
mm?3 and six PWO plates of 25x25x5 mm3,

Figure 3 shows transmittance spectra (left), light output as a function of integration time (middle) and normalized light
output (right) as a function of one MeV equivalent neutron fluence for six BaF, plates of 15x15x5 mm? and compared to
six LYSO:Ce plates of 10x10x5 mm? and six PWO plates of 15x15x5 mm?. Both LYSO:Ce and BaF, plates show more
than 80% of light output after 10® neg/cm?.
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Figure 3. Transmittance spectra (left) and light output as a function of integration time (middle) and light output (right) are shown
as a function of one MeV equivalent neutron fluence for six BaF. plates of 15x15x5 mm? and compared to six LYSO:Ce plates
of 10x10x5 mm?3 and six PWO plates of 15x15x5 mm3,

PROGRESS ON ULTRAFAST BAF.:Y CRYSTALS

It is well known that BaF, crystals have an ultrafast cross-luminescence scintillation with sub-ns decay time peaked at 220
nm, and a 600 ns slow component peaked at 300 nm with a much higher intensity. The latter causes pileup in a high-rate
environment. The left plot of Fig. 4 shows the pulse shape measured by a PMT (top) and a MCP (bottom) for a BaF;
sample. About 0.5 and 0.9 ns of decay time and FWHM width respectively are observed by the MCP, but not PMT, where
1.4 and 3.1 ns are observed due to slow response time of the PMT. It is also known that the slow component in BaF;
crystals may be suppressed either by rare earth doping in crystals [4] or by using a solar blind photodetector [9]. The
middle and right plots of Fig. 4 are respectively the X-ray excited emission spectra and the light output as a function of



integration time for BaF, cylinders of ®18x21 mm?® grown at Beijing Glass Research Institute (BGRI) with different Y3*
doping levels [4]. They show a reduced slow light intensity for an increased yttrium doping level, while the intensity of
the fast emission is maintained.
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Figure 4. Left: The pulse shape measured by a PMT (top) and a MCP (bottom) shows the ultrafast scintillation light component
with 0.5 ns decay time for a BaF2 sample. The emission (Middle) and integrated light output (Right) are shown for BaF2 samples
with yttrium doping at different levels.

Development for large size BaF:Y crystals with better optical quality, scintillation performance, and radiation hardness
is on-going [6]. The left plot of Fig. 6 shows the transmittance spectra for two BaF,:Y crystals grown recently by BGRI
(top) and SIC (bottom) together with BaF,:Y emission spectrum and the numerical values of EWLT [11]. Progress was
observed in optical quality. The middle plot of Fig. 6 shows photocurrent measured by the Hamamatsu R2059 PMT for
SIC BaF,:Y-2020 (top) and SIC BaF»-2 (bottom) under 23 rad/h, respectively. The right plot of Fig. 6 shows the measured
photocurrent as a function of the dose rate for BGRI and SIC BaF,:Y and SIC BaF,-2 samples under 2 and 23 rad/h.
BaF2:Y long crystals with excellent optical quality and much-reduced impurity related absorption were fabricated
successfully. Yttrium doping in BaFzreduces the y-ray induced photocurrent and readout noise significantly. R&D is on-
going to measure the radiation hardness for the BaF.:Y crystals.
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Figure 5. Left: Transmittance spectra for two BaF2:Y crystals from BGRI (top) and SIC (bottom). Middle: Photocurrent measured
by the Hamamatsu R2059 PMT for SIC BaF2:Y-2020 (top) and SIC BaF2-2 (bottom) under 23 rad/h, respectively. Right:
photocurrent is shown as a function of the dose rate for BGRI and SIC BaF2:Y samples and SIC BaF2-2 under 2 and 23 rad/h.

In addition to yttrium doping in BaF; crystals solar-blind photodetectors also improve the F/S ratio, and thus reduce
radiation induced readout noise to a level of less than 1 MeV for a BaF:Y crystal-based ultrafast calorimeter [12]. Fig. 7
shows the quantum efficiency (QE) for a Photek solar-blind cathode (Left), the photon detection efficiency (PDE) for a



FBK solar-blind SiPM (Middle) and the PDE of a Hamamatsu VUV SiPM (Right) as a function of wavelength and the
emission spectra of BaF, and BaF,:Y [12]. Also shown in the figures are the emission spectra of BaF; and BaF,:Y crystals,
and the numerical values of the emission weighted QE (EWQE) and PDE (EWPDE) for the fast and slow components.
The EWQE and EWPDE values represent photodetector’s ability to detect the fast and slow component. Their ratio (F/S)
represents photodetector’s ability for the slow suppression. Both solar-blind photodetectors show higher fast detection
efficiency and larger F/S ration as compared to the Hamamatsu VUV SiPM. R&D continues along this line to develop
solar-blind photodetectors.
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Figure 6. The QE of a Photek solar-blind cathode (Left), the PDE of a FBK solar-blind SiPM (Middle) and the PDE of a
Hamamatsu VUV SiPM (Right) are shown as a function of wavelength.

One of the potential applications of the ultrafast BaF,:Y scintillation is front imager for GHz hard X-ray imaging required
by future free electron laser facilities. Fig. 5 show response of BaF,, BaF,:Y, ZnO:Ga and LYSO:Ce crystals to septuplet
X-ray bunches with 2.83 ns bunch spacing measured at the advanced photon source facility of ANL [10]. While BaF;
crystals show clearly separated X-ray bunches with 2,83 ns spacing, the slow crystals do not. In addition, amplitude
reduction is also observed for eight septuplets in BaF, and LYSO:Ce, which is due to MCP saturation caused by the slow
scintillation in BaF; and LYSO:Ce, but not in slow-suppressed BaF:Y.
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Figure 7. The temporal response to septuplet 30 keV X-ray bunches with 2.83 ns bunch spacing measured at APS of ANL is shown
for BaF2:Y, BaFz, ZnO:Ga and LYSO:Ce crystal samples.

SUMMARY

Future HEP experiments require fast and radiation hard inorganic scintillators. Scintillation performance of various fast
and ultrafast crystals is summarized and compared. Bright, fast and radiation hard LY SO:Ce crystals meet the requirements
but with high cost. Other crystals, such as CsF, CeBrs, LaClz:Ce and LaBr;:Ce, show excellent scintillation performance



but are hygroscopic. Because of its ultrafast light of 0.5 ns decay time, BaF, crystals promise an ultrafast calorimeter for
future HEP experiments. BaF,:Y featured with the fast component and a suppressed slow component is also promising.
R&D is on-going to develop large size BaF,:Y crystals and solar-blind VUV photodetectors for Mu2e-1I.
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