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ABSTRACT  

Future HEP experiments at the energy and intensity frontiers present stringent challenges to inorganic scintillators in 
radiation tolerance, ultrafast time response and cost. This paper reports recent progress in radiation hard, ultrafast, and 
cost-effective inorganic scintillators for future HEP experiments. Examples are LYSO crystals for a precision time of 
flight detector, LuAG ceramics for an ultracompact, radiation hard shashlik sampling calorimeter, BaF2:Y crystals for an 
ultrafast calorimeter, and cost-effective scintillators for a homogeneous hadron calorimeter. Applications for Gigahertz 
hard X-ray imaging will also be discussed. 

INTRODUCTION  
Historically, inorganic scintillators are widely used in the high energy physics (HEP) experiments to construct 
electromagnetic calorimeter, providing the best possible energy resolution and position resolution, good electron and 
photon identification and reconstruction efficiency. A homogeneous hadron calorimeter (HHCAL) would also provide 
excellent jet mass resolution by dual readout of either scintillation and Cerenkov light or scintillation light in fast and 
slow gate. The recent DOE report on HEP detector R&D needs [1] points out the following priority research directions 
which are related to the inorganic scintillators. Fast and radiation hard inorganic scintillators are needed to face 
challenges of the unprecedented harsh radiation environment expected by future HEP experiments at the energy frontier, 
such as the High Luminosity Large Hadron Collider (HL-LHC) and the proposed Future Hadron Circular Collider (FCC-
hh), where up to 500 Grad and 5×1018 neq/cm2 of one MeV equivalent neutron fluence are expected by the forward 
calorimeter [2]. Ultrafast inorganic scintillators are needed for future HEP experiments at the intensity frontier to 
mitigate high event rate and pileup [3]. Cost-effective inorganic scintillators are needed for crystal ECAL and the 
proposed HHCAL concept. Table 1 lists optical and scintillation properties of fast and ultrafast scintillators. 
 

Table 1 Optical and scintillation properties of fast and ultrafast inorganic scintillators 
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 Cerium doped lutetium yttrium oxyorthosilicate (Lu2(1−x)Y2xSiO5:Ce or LYSO) and lutetium aluminium garnet 
(Lu3Al5O12 or LuAG:Ce) show high stopping power, high light output, fast decay time and good radiation hardness 
against ionization dose and hadrons. LYSO crystals are used to construct a barrel timing layer (BTL) for the CMS 
upgrade for the HL-LHC, where 5 Mrad ionization dose, 2.5×1013 charged hadrons/cm2 and 3×1014 1 MeV equivalent 
neutrons/cm2 are expected [4]. They were also proposed for an ultra-compact, radiation hard shashlik calorimeter for the 
HL-LHC [5]. Yttrium doped barium fluoride crystals (BaF2:Y) have an ultrafast scintillation component with 0.5 ns 
decay time and a suppressed slow component [6]. An ultrafast BaF2:Y total absorption calorimeter is considered by the 
Mu2e-II experiment [3]. Cost-effective crystals and glasses are under development for the HHCAL concept. It is also 
interesting to note that ultrafast inorganic scintillators listed in Table 1 may also be used for GHz hard X-ray imaging at 
future free electron laser facilities [7]. 

LYSO CRYSTALS AND LUAG CERAMICS  
Radiation hardness against ionization dose, protons and neutrons are investigated for LYSO crystal and LuAG ceramic 
samples from various vendors. The JPL Total Ionization Dose (TID) facility, the CERN PS-IRRAD Proton Facility, and 
the Weapons Neutron Research facility of the Los Alamos Neutron Science Center (WNR of LANSCE) were used in 
this investigation. Fig. 1 shows radiation induced absorption coefficient (RIAC) values as a function of integrated 
ionization dose (Left), proton fluence (Middle), and 1 MeV equivalent neutron fluence (Right), for various LYSO crystal 
samples, and compared to the radiation hardness specification for CMS BTL LYSO crystals of 3 x 3 x 50 mm3: RIAC < 
3 m-1 after 4.8 Mrad, 2.5×1013 p/cm2 and 3×1014 neq/cm2 [4]. In this investigation, we also found that radiation damage 
induced by protons in LYSO crystals is an order of magnitude larger than that from neutrons. This is due to the 
ionization energy loss from protons in addition to the damage caused by displacement and nuclear breakup.  
 

 
Figure 1. The RIAC values are shown as a function of the ionization dose (Left), proton fluence (Middle), and one MeV 
equivalent  neutron fluence (Right) for LYSO crystals from various vendors. 

Fig. 2 show RIAC values as a function of 1 MeV equivalent neutron fluence (Left) and proton fluence (Middle) up to 
6.7×1015 neq/cm2 and 1.2×1015 p/cm2 for LuAG:Ce ceramics and LYSO:Ce and BaF2 crystals. LuAG:Ce ceramics shows 
a factor of two better radiation hardness than LYSO crystals, so are promising for the FCC-hh [8]. LuAG:Ce ceramics, 
however, also has slow scintillation component. Fig. 2 (Right) shows that Ca2+ co-doping improves the Fast/Total (F/T) 
ratio, defined as the ratio between the light output in 200 ns and 3,000 ns, to 90%. Investigation continues to improve the 
F/T ratio and radiation hardness for LuAG:Ce/Ca ceramics.    
 
The left plot of Fig. 3 shows the LuAG:Ce excitation spectrum (red) [8] matches well with the LYSO:Ce emission 
spectrum (blue) [9], indicating that LuAG:Ce may serve as an effective wavelength shifter for LYSO:Ce crystals. The 
middle plot shows the proposed RADiCAL concept [10], which uses tungsten plates as absorber, LYSO:Ce crystals as 
sensitive material and LuAG:Ce ceramic fibers as wavelength shifter. The RADiCAL concept provides an ultra-
compact, radiation hard and longitudinally segmented electromagnetic calorimeter for the HL-LHC and FCC-hh. The 
right plot shows seven Φ1×40 mm LuAG:Ce ceramic fibers under investigation, which were produced at Shanghai 
Institute of Ceramics (SIC) by using the laser heated pedestal growth technology for LuAG:Ce fibers.  



 
 

 
 

 
 
Figure 2. RIAC values are shown as a function of the one MeV equivalent neutron fluence (Left) and proton fluence (Middle) 
for LuAG:Ce, LYSO:Ce and BaF2 crystals. Right: The light output in 200 ns and 3 µs gate is shown for LuAG:Ce ceramics. 

 

  
Figure 3. Left: The LuAG:Ce excitation (red) matches well the LYSO:Ce emission (blue). Middle: The RADiCAL 
concept using radiation hard LYSO:Ce as sensitive material and LuAG:Ce ceramics as wavelength shifter. Right: 
Seven Φ1×40 mm LuAG:Ce ceramic fibers produced at SIC by using the laser heated pedestal growth technology.  

ULTRAFAST BAF2:Y CRYSTALS 
It is well known that BaF2 crystals have an ultrafast cross-luminescence scintillation with sub-ns decay time peaked at 
220 nm, and a 600 ns slow component peaked at 300 nm with a much higher intensity. The latter causes pileup in a high-
rate environment. The left plot of Fig. 4 shows the pulse shape measured by a PMT (top) and a MCP (bottom) for a BaF2 
sample. A decay time of 0.5 ns is observed by the MCP, but not PMT, where 1.4 ns decay time is due to the slow 
response time of the PMT. It is also known that the slow component in BaF2 crystals may be suppressed either by rare 
earth doping in crystals or by using a solar blind photodetector [11]. The middle and right plots of Fig. 4 are respectively 
the X-ray excited emission spectra and light output as a function of integration time for BaF2 cylinders of Φ18×21 mm3 
grown at Beijing Glass Research Institute (BGRI) with different Y3+ doping levels [6]. They show a reduced slow light 
intensity for an increased yttrium doping level, while the intensity of the fast emission is maintained.  
 
One of the potential applications of the ultrafast BaF2:Y scintillation is front imager for GHz hard X-ray imaging 
required by future free electron laser facilities [12]. Fig. 5 show response of BaF2, BaF2:Y, ZnO:Ga and LYSO:Ce 
crystals to septuplet X-ray bunches with 2.83 ns bunch spacing measured at the advanced photon source facility of ANL. 
While BaF2 crystals show clearly separated X-ray bunches with 2,83 ns spacing, the slow crystals do not. In addition, 
amplitude reduction is also observed for eight septuplets in BaF2 and LYSO:Ce, which is due to MCP 
saturation caused by the slow scintillation in BaF2 and LYSO:Ce, but not in slow-suppressed BaF2:Y.  



 
 

 
 

 
Figure 4. Left: The pulse shape measured by a PMT (top) and a MCP (bottom) shows the ultrafast scintillation light component  
with 0.5 ns decay time for a BaF2 sample. The emission (Middle) and integrated light output (Right) are shown for BaF2 samples 
with yttrium doping at different levels. 

 
Figure 5. The temporal response to septuplet 30 keV X-ray bunches with 2.83 ns bunch spacing measured at APS of ANL is 
shown for BaF2:Y, BaF2, ZnO:Ga and LYSO:Ce crystal samples.  

 
BaF2:Y crystals of large size is under development for the Mu2e-II experiment [13]. In addition to yttrium doping in 
BaF2 crystals solar-blind photodetectors also improve the F/S ratio, and thus reduce radiation induced readout noise to a 
level of less than 1 MeV for a BaF2:Y crystal-based ultrafast calorimeter [13]. Fig. 6 shows the quantum efficiency (QE) 
of a Photek solar-blind cathode (Left), the particle detection efficiency (PDE) of a FBK solar-blind SiPM (Middle) and 
the PDE of a Hamamatsu VUV SiPM (Right) as a function of wavelength. The ability of solar-blind photodetectors in 
slow suppression is clearly demonstrated. R&D continues to develop solar-blind photodetectors [11]. 
 

 
Figure 6. The QE of a Photek solar-blind cathode (Left), the PDE of a FBK solar-blind SiPM (Middle) and the PDE of a 
Hamamatsu  VUV SiPM (Right) are shown as a function of wavelength. 



 
 

 
 

BaF2:Y crystals of large size is under development for the Mu2e-II experiment. For an ultrafast calorimetry radiation 
hardness against ionization dose and hadrons is crucial. The left plot of Fig. 7 shows normalized emission weighted 
transmittance (top) and light output (bottom) as a function of integrated ionization dose up to 130 Mrad for three 20 cm 
long BaF2 samples from different vendors. It is interesting to note the ionization dose induced damage saturates around 
10 krad until 130 Mrad, indicating limited defect density in these crystals. This is confirmed by normalized light output 
as a function of proton (Middle) and neutron (Right) fluence up to  9.7×1014 p/cm2 and 8.3×1015 neq/cm2. R&D continues 
to investigate radiation hardness for large BaF2:Y crystals [13]. 
 

 
 
Figure 7. Left: Normalized transmittance (top) and light output (bottom) are shown as a function of integrated ionization dose 
for three 20 cm long BaF2 samples from different vendors. Normalized light output is shown as a function of integrated proton 
(Middle) and one MeV equivalent neutron fluence (Right) for LYSO:Ce, BaF2 and PWO crystal plates. 

COST-EFFECTIVE INORGANIC SCINTILLATORS 
An electron-positron Higgs factory is the highest-priority next collider, where good EM and jet resolutions are required 
for study all decay channels of the Higgs boson. Fig. 8 shows the dual readout CalVision crystal ECAL followed by the 
IDEA HCAL [15], promising a 3%/√E energy resolution for electrons and photons, and a 27%/√E energy resolution for 
neutral pions, which is much better than 60% achieved so far by sampling hadron calorimetry.  
 

 
 

Figure 8. The dual readout CalVision crystal ECAL followed by the IDEA dual readout fiber HCAL. 
 
An even better resolution for hadrons may be achieved by a total absorption hadron calorimeter. Figure 9 (Left) shows a 
homogeneous hadron calorimeter (HHCAL) concept [16] where a large volume of inorganic scintillators allows event by 
event corrections with dual readout to recover the missing energies due to nuclei breakup in hadronic jets. Extensive 
GEANT simulations carried out at Fermilab, ANL and CERN show that a better than 20%/√E energy resolution can be 



 
 

 
 

achieved for charged pions (Middle and Right) by using dual readout of scintillation and Cerenkov light, or scintillation 
light in short and long gates.  
 

 
Figure 9. The HHCAL concept (Left) promises a 20%/√E energy resolution for charged pions (Middle) and a better than 20% 
stochastic term (Right) in hadronic energy resolution. 
 

Because of the large volume of inorganic scintillators required for these total absorption calorimetry, development of 
cost-effective inorganic scintillators is crucial. The material of choice must be dense, cost-effective, UV transparent (for 
effective collection of Cerenkov light) and allow for a clear discrimination between the Cerenkov and scintillation light.  

Table 2 Optical and scintillation properties of candidate inorganic scintillators for the HHCAL concept 
 

  
Table 2 lists basic optical and scintillation properties of candidate heavy inorganic material for the HHCAL concept, 
where BGO, BSO, PWO, PbF2, PbFCl and Sapphire:Ti are crystals, AFO, DSB and HFG are scintillating glasses. The 
left and middle plots of Fig. 10 show a broad emission peaked at 750 nm with a decay time of 3 µs for two titanium 
doped Sapphire samples. With Kyropoulos growth technology, the cost of mass-produced Sapphire ingot of Φ50×55 cm 
is about $12,000/piece. The right photo of Fig. 10 shows mass-produced sapphire ingots in one production facility. After 
cutting and polishing, the price of sapphire crystals is expected to be less than $1/cc, indicating that it is possible to 
mass-produce inorganic scintillators cost-effectively. While its UV cut-off wavelength of 250 nm and nuclear interaction 
length of 24 cm are adequate for the HHCAL application, its density and radiation length of 4 g/cc and 7 cm, however, 



 
 

 
 

are not ideal. Work along this line will continue to search for cost-effective heavy inorganic scintillators for these novel 
calorimeter concepts. 
 

 
Figure 10. Emission (Left) and decay time (Middle) are shown for two titanium doped Sapphire crystal samples. Right: Sapphire 
ingots in a production facility. 

SUMMARY 

Future HEP experiments at the energy frontier require fast and radiation hard calorimetry. The RADiCAL 
concept utilizes bright and fast LYSO:Ce crystals and LuAG:Ce WLS for an ultra-compact, ultra-radiation 
hard and longitudinally segmented shashlik calorimeter for HL-LHC and FCC-hh.  
 
Future HEP experiments at the intensity frontier requires ultrafast calorimetry. R&D is on-going to develop 
large size BaF2:Y crystals and solar-blind VUV photodetectors for Mu2e-II. 
  
The proposed lepton Higgs factory requires good EM and jet resolutions. The dual readout CalVision crystal 
ECAL followed by the IDEA HCAL provides an excellent option.  
 
Because of total absorption for hadrons the HHCAL concept promises the best jet mass resolution. Crucial 
R&D is to develop cost-effective inorganic scintillators of large volume.  
 
Novel inorganic scintillators are needed for all these calorimeter concept.  
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