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Abstract. Future HEP experiments at the energy and intensity frontiers require fast and ultrafast
inorganic scintillators with excellent radiation hardness to face the challenges of unprecedented
event rate and severe radiation environment. This paper reports recent progresses in fast and
ultrafast inorganic scintillators, such as LYSO:Ce crystals and LuAG:Ce ceramics for an
inorganic scintillator based shashlik sampling calorimeter and yttrium doped BaF; crystals for
the proposed Mu2e-II experiment. Applications of ultrafast inorganic scintillators in Gigahertz
hard X-ray imaging will also be discussed.

1. Introduction

Inorganic scintillators have been used widely in high energy and nuclear physics experiments,
medical instruments and homeland security applications. In high energy physics (HEP) and nuclear
physics experiments, total absorption electromagnetic calorimeters made of inorganic crystals are
known for their superb energy resolution and detection efficiency for photon and electron measurements
[1]. An inorganic crystal calorimeter is thus the choice for those experiments where precision
measurements of photons and electrons are crucial for their physics missions.

Among all existing crystal calorimeters, the CMS lead tungstate (PbWO4 or PWO) crystal
calorimeter, consisting of 75,848 crystals of 11 m?, is the largest. Because of its superb energy resolution
and detection efficiency, the CMS PWO calorimeter has played an important role for the discovery of
the Higgs boson by the CMS experiment [2]. Crystal calorimeters currently under construction are: an
undoped Csl calorimeter for the Mu2e experiment at Fermilab, a PWO calorimeter for PANDA at FAIR,
a LYSO calorimeter for COMET at JPARC and a PbF, calorimeter the g-2 experiment at Fermilab.

Future HEP calorimeters will be operated under unprecedented luminosity. An important issue
is thus the decay time of scintillation light. Table 1 lists the optical and scintillation properties for fast
inorganic crystal scintillators with a scintillation decay time ranged from sub-nanosecond to a few tens
nanosecond, and compared to plastic scintillator [1]. Among the fast crystals listed in Table 1 the mass-
production cost of barium fluoride (BaF,) and undoped Csl crystals is significantly lower than others
because of their low raw material cost and low melting point.

Crystal calorimeters for future HEP experiments at the energy frontier face a challenge of severe
radiation environment. Significant losses of light output have been observed in the CMS PWO crystals
at large rapidity in situ at the LHC caused by both ionization dose and hadrons [3]. Controlling oxygen
contamination in halide crystals, e.g. CsI: T1, or oxygen vacancies in oxide crystals, e.g. PWO, was found
effective [4]. Co-doping with yttrium and lanthanum was also found effective for CMS PWO crystals
[5]. For experiments to be operated at the HL-LHC with 3,000 fb!, crystals should survive an
environment with an absorbed dose of 100 Mrad, charged hadron fluence of 6x10'* p cm? and fast
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neutron fluence of 3x10" n cm™. To mitigate this challenge, efforts have been made to reduce the light
path length in inorganic scintillators by designing an inorganic scintillator-based shashlik sampling
calorimeter [6]. On the other hand, radiation damage in various inorganic scintillators has been
investigated for an ionization dose up to 340 Mrad [7] and a fluence of protons up to 3x10"> p cm™ [8].
Progress on neutron induced radiation damage up to 3.6x10'5 n cm™ was also investigated [9]. BaF,
GAGG, LuAG and LYSO based inorganic scintillators are found to be radiation hard for the HL-LHC.
Following these investigations, a LYSO MIP timing detector has been proposed for the CMS upgrade
for the HL-LHC [10].

Table 1. Basic Properties of Fast Inorganic Crystal Scintillators

- LSO/LYSO ﬂ Ysoo
7.40 6.71 4.44

Density (g/cm?) 4.51 4.89 6.16 5.23 3.86 5.29 1.03
Melting point (°C) 2050 1950 1980 621 1280 1460 722 858 783 70
Radiation Length (cm) 1.14 1.38 311 186 2.03 1.70 1.96 2.81 1.88 42 .54
Moliére Radius (cm) 2.07 2.23 2.93 3.57 3.10 241 2.97 3.71 2.85 9.59
Interaction Length (cm) 20.9 22.2 27.9 39.3 30.7 23.2 31.5 37.6 30.4 78.8
Z value 64.8 57.9 333 54.0 51.6 50.8 45.6 47.3 45.6
dE/dX (MeV/cm) 955 888 6.56 556 6.52 842 6.65 5.27 6.90 2.02
- . 420 430 420 300 340 371 335 356 408
Emission Peak® (nm) 310 220 300
Refractive Index® 1.82 1.85 1.80 195 1.50 1.62 1.9 1.9 19 1.58
P e 100 a5 76 4.2 42 8.6 141 15 153 35
Relative Light Yield 13 a8 N
D Times 40 73 60 30 650 30 17 570 20 18
ecay Time® (ns) 6 09 24
d(LY)/dT @ (%6/°C) -0.2 -0.4 -0.3 -1.4 ;.I.f ~0 0.1 0.1 0.2 ~0

a.  Top line: slow component, bottom line: fast component.1- N. Tsuchida et al Nucl. Instrum. Methods Phys. Res. A, 385 (1997) 290-298
http://www.hitachi-chem.co.jp/english/products/cc/017 html

2. W.Drozdowski et al. IEEE TRANS. NUCL. SCI, VOL.55, NO.3 (2008) 1391-1396
Chenliang Li et al, Solid State Commun, Volume 144, Issues 5-6 (2007),220-224

b. At the wavelength of the emission maximum.

c.  Relative light yield normalized to the light yield of LSO http://scintillator.Ibl.gov/
d. At room temperature (20°C) 3. http:/mwww.detectors.saint-gobain.com/Plastic-Scintillator.aspx

. Softening point http://pdg.lbl.gov/2008/AtomicNuclearProperties/HTML_PAGES/216.htm|

Another challenge for future HEP experiments at the intensity frontier, such as Mu2e-II, where
the event rate, and thus the radiation dose, will be increased by a factor of ten as compared to the Mu2e-
I experiment [11]. Such a fast rate requires faster and radiation harder inorganic scintillators to mitigate
the pile-up effect. R&D aimed at developing ultrafast inorganic scintillators has been pursued. Yttrium
doping in BaF, crystals was found to be effective to suppress the slow scintillation component in BaF,
while maintaining its sub-ns fast scintillation component [12]. ZnO nano-particle imbedded in
polystyrene was also reported with a sub-ns decay time [13]. An interesting investigation along this
direction is to combine confined excitons and bi-excitons into a form of nanocrystals in inorganic
scintillators [14].

For HEP experiments at future lepton colliders, inorganic scintillators have also been proposed
to build a Homogeneous Hadron Calorimeter (HHCAL) to achieve unprecedented jet mass resolution
by dual readout of both Cherenkov and scintillation light [15,16]. For this application, development of
cost-effective crystal detectors is a crucial issue because of the huge crystal volume required, while the
requirements on radiation hardness is much relaxed because of the lepton collider environment [17].
Investigation along this line has been concentrated on developing cost-effective UV transparent
inorganic scintillators, including crystals and glasses. Progress on UV transparent cerium-doped and co-
doped fluorophosphate glasses was reported in several conferences [18, 19].
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2. Fast and Radiation Hard LuAG:Ce Ceramics
To face the challenge of severe radiation environment at the HL-LHC, an LYSO/W/quartz
capillary-based shashlik calorimeter concept was proposed. As shown in Fig. 1, it consists of 1.5 mm
LYSO plates as active material interleaved with 2.5 mm tungsten plates as absorbers, four quartz
capillaries as wavelength shifters, and one quartz leaky fiber for injection of monitoring light [6].
Optical waveguides

to remote pholosensors

Figure 1 An LYSO/W/Quartz Capillary-based shashlik sampling calorimeter concept.

W (2.5 mm)
LYSO (1.5 mm)
Quartz capillary

Monitoring fiber

With a density of 6.73 g/cm?, a fast scintillation with a decay time of about 50 ns and a high
light yield of 26,000 photons/MeV cerium-doped Lu3AlsO,, aluminium garnet (LuAG:Ce) is another
attractive bright and fast scintillator [6]. Compared to crystals the fabrication process for scintillating
ceramics features a lower temperature, a more uniform doping distribution and a more effective use
of raw materials. LuAG:Ce ceramics thus is a cost-effective alternative for LYSO:Ce crystals for the
proposed shashlik calorimeter concept.
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Figure 2. Optical and scintillation properties of LuAG:Ce ceramic samples

The left and middle plots of Fig. 2 show respectively the transmittance spectra and the light
output as a function of integration time for LuAG:Ce ceramic samples produced at Shanghai Institute
of Ceramics (SIC) [20]. While their light yield and decay time are compatible with LYSO:Ce crystals,
these LuAG:Ce ceramic samples have also a slow scintillation component with a decay time of about
a us. Efforts have been made to suppress the slow component by varying cerium doping level and
introducing various co-dopings [20]. The right plot of Fig. 2 shows a relationship between the light
outputs in 200 ns (Fast) and 3,000 ns (Total) gate for LuAG:Ce ceramics with various mono- and
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divalent co-dopings. Li+ co-doping reduces both the F/T ratio and the LO of 200 ns gate; Mg2+ co-
doping improves the F/T ratio and shows the highest LO in 200 ns gate; and Ca2+ co-doping is found
effective with the highest F/T ratio ~90% [20].
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Figure 3. Ionization dose and proton induced radiation damage in LuAG:Ce ceramic samples.

Fig. 3 shows excellent radiation hardness of LuAG:Ce ceramics. The left and middle plots
of Fig. 3 show no visible damage in transmittance and light output respectively for two LuAG:Ce
plate samples before and after an ionization dose of up to 220 Mrad plus an 800 MeV proton fluence
of up to 2.9x10' p cm™. The right plot of Fig. 3 shows the numerical values of the normalized
emission weighted longitudinal transmittance (EWLT) (top) and light output (bottom) as a function
of ionization dose for two LuAG:Ce ceramic samples. It is clear that LuAG:Ce ceramics is radiation
hard against the ionization dose and protons, so is a cost-effective alternative to replace LYSO for
future HEP experiments in a severe radiation environment, such as the HL-LHC. R&D along this line
will continue to investigate its radiation hardness against neutrons, and to develop radiation hard
LuAG ceramic scintillators with suppressed slow scintillation component for future HEP experiments.

3. Ultrafast BaF,:Y Crystals

BaF is a classical inorganic scintillator featured with an ultrafast cross-luminescence with
sub-ns decay time. The left and middle plots of Fig. 4 show the emission and pulse shape of its
ultrafast scintillation component peaked at 220 nm with sub-ns decay time, as well as a slow
scintillation component peaked at 300 nm with 600 ns decay time and a five times brightness of its
fast component. The slow component would cause pileup in an environment of fast event rate. Two
approaches were used to reduce the slow component: selective doping with rare earth (La, Y, and Ce)
[21] and selective readout with solar-blind photodetector [22] as shown in the right plot of Fig. 4.
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Figure 4. Fast and slow scintillation in BaF, and slow suppression.
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Yttrium doping in BaF, was found to be effective in supressing the slow component. Fig. 5
shows x-ray excited emission (left) and transmittance (middle) spectra and light output as a function
of integration time for BaF, cylinders of ®19x21mm grown at Beijing Glass Research Institute
(BGRI) with yttrium doping levels from zero to 5 at% [12]. It is clear that yttrium doping is effective
in suppressing the slow scintillation component while maintaining the fast component unchanged.
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Figure 5. Optical and scintillation properties of BaF»:Y samples.

Fig. 6 compares pulse shape measured by a Photek MCP-PMT 240 and an ultrafast 23 GHz
Tektronix MSO 72304DX scope for Cherenkov light from a 5 cm PbF, cube sample (left) grown at
SIC and ultrafast scintillation light from ®10 x10 mm BaF, (middle) and yttrium doped BaF»
(BaF»:Y, right) samples grown at BGRI. It is interesting to note that all these light pulses show an
ultrafast rise time of 0.2 ns and a decay time of about 0.6 ns, indicating that the ultrafast scintillation
light from BaF, and BaF,:Y is as fast as Cherenkov light from PbF,. The data also confirm that yttrium
doping in BaF, maintains the intensity of the ultrafast light. By using Photek MCP-PMT, BaF; crystals
provides a sub-ns FWHM pulse width, which is unmatched by any other inorganic scintillators. Such
ultrafast inorganic scintillator may also find applications in GHz hard X-ray imaging [23] and time of
flight PET imaging, in addition to HEP and nuclear physics experiments.
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Figure 6. Ultrafast pulse shape in PbF; (left), BaF, (middle) and BaF»:Y (right).

4. Radiation Hardness of Fast Inorganic Scintillators

All known inorganic scintillators suffer from damage induced by ionization dose [1, 7] as well
as charged [8] and neutral hadrons [9]. There are three possible radiation damage effects in crystal
scintillators: (1) scintillation mechanism damage, (2) radiation induced phosphorescence (afterglow) and
(3) radiation induced absorption (color centers). A damaged scintillation mechanism would reduce
scintillation light yield and cause a degradation of light output. It may also change light response
uniformity along a long crystal length since the radiation dose profile is usually not uniform. The
radiation induced phosphorescence, commonly called afterglow, causes an increase of the dark current
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in the photo-detectors, and thus an increased readout noise. The radiation induced absorption reduces
the light attenuation length [24], and thus the light output and possibly also the light response
uniformity. There is so far no experimental evidence for a scintillation mechanism damage. All crystal
scintillators, however, suffer from the radiation induced absorption and phosphorescence by ionization
dose as well as charged and neutral hadrons.
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Figure 7. Ionization dose induced radiation damage in large size inorganic scintillators

Ionization dose induced radiation damage was investigated for large size (about 200 mm long)
inorganic scintillators may be used to construct total absorption crystal calorimeter [7]. The left plot of
Fig. 7 shows normalized EWLT (top) and light output (bottom) as a function of ionization dose for the
fast component in three BaF, crystals grown at different vendors: SIC, BGRI and Incrom. The average
values of EWLT and light output are more than 40% after 120 Mrad. The middle and right plots of Fig.
7 compare the values of the radiation induced absorption coefficient (RIAC) at the emission peak and
the normalized light output as a function of the integrated dose for various crystals. LYSO clearly shows
the best radiation hardness among all crystal scintillators with its light output maintained at 75% and
60% respectively after 120 and 340 Mrad. On the other hand, the light output of BGO and BaF; is
maintained at 35% and 45% respectively after 200 and 120 Mrad, so may be considered as cost-effective
alternatives for LYSO.
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Figure 8. Proton induced radiation damage in LY SO, BaF; and PWO crystals.

Protons were found to cause radiation damage in inorganic scintillators [8]. The left and middle
plots of Fig. 8 show respectively the transmittance spectra and the light output as a function of
integration time (middle) for BaF, plates of 25 x 25 x 5 mm?® after proton irradiation in three steps up to
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1x10" p em™. The right plot of Fig. 8 compares the normalized light output as a function of 800 MeV
proton fluence for LY SO plates of 10 x 10 x 3 mm? as well as BaF» and PWO plates of 25 x 25 x 5 mm?
after a proton fluence up to 1x10' p cm. While both LYSO and BaF, samples showed a light output
degradation of less than 20%, about 90% loss in LO is observed in PWO after a proton fluence of 1x10'3
p cm?. It is clear that LY SO and BaF, are much more radiation hard against protons than PWO.
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Figure 9. Neutron induced radiation damage in LY SO, BaF2 and PWO crystals.

Recently, neutron induced radiation damage in inorganic scintillators was also investigated [9].
Fig. 9 shows transmittance (left), light output as a function of integration time (middle) and the
normalized light output as a function of fast neutron fluence (right) for LYSO, BaF, and PWO plates of
10 x 10 x 5 mm? after a fast neutron (>1 MeV) fluence up to 3.6x10'5 n cm™. While both LYSO and
BaF, samples show a light output degradation of less than 25% after 3.6x10'°> n cm, about 86% loss in
LO is observed in PWO plates after 1.6x10'> n cm™. It is clear that LYSO and BaF; are radiation hard
against fast neutrons than PWO.

5. Summary

LYSO, BaF; crystals and LuAG ceramics show excellent radiation hardness up to 340 Mrad,
1x10" p cm™? and 3.6 x10'> n cm™, promising a fast and robust detector in a severe radiation environment,
such as HL-LHC. Commercially available undoped BaF, crystals provide ultrafast light with sub-ns
decay time. Yttrium doping in BaF; crystals increases its F/S ratio significantly while maintaining the
ultrafast component. This material thus is promising for the Mu2e-II experiment and GHz hard X-ray
imaging. Recent results of neutron irradiation at LANL show fast neutrons up to 3.6 x10'* n cm™ do not
cause significant damage in LYSO and BaF, plates. We plan to continue investigating novel ultrafast
crystals and radiation hardness of LuAG ceramics and BaF,:Y crystals. Will also pay an attention to
photodetector with DUV response for reading out the ultrafast scintillation light with sub-ns decay time.
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