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Abstract

Crystal calorimeter has traditionally played an important role in precision measurement of electrons and photons in

high energy physics experiments. Recent interest in calorimeter technology extends its application to measurement of

hadrons and jets with dual readout. Potential application of new generation scintillating crystals of high density and

high light yield, such as cerium doped LSO and LYSO, in high energy physics experiments is described. Candidate

crystals for the homogeneous hadronic calorimeter concept are also discussed.
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1. Introduction

Total absorption shower counters made of inorganic crystal scintillators have been known for decades

for their superb energy resolution and detection efficiency foe electrons and photons [1]. In high energy

and nuclear physics, crystal calorimeters have been constructed, and their use has been a key factor in the

successful physics programs of many experiments. The physics discovery potential of crystal calorimeter

was early demonstrated by the Crystal Ball experiment through its study of radiative transitions and decays

of the Charmonium family [2]. With proper calibration and monitoring, crystal calorimeters usually achieve

their designed resolution in situ [3].

Table 1 summarizes parameters of past and present crystal electromagnetic calorimeters in high energy

physics. One notes that each of these calorimeters requires several cubic meters of high quality crystals. The

most ambitious crystal calorimeter is presumably the CMS calorimeter which uses 11 m3 PbWO4 crystals.

Its designed energy resolution [4] is

σE/E = 2.7%/
√

E ⊕ 0.55% ⊕ 0.16/E (1)

for the barrel, and

σE/E = 5.7%/
√

E ⊕ 0.55% ⊕ 0.77/E (2)

for the endcaps.
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Table 1. Crystal Calorimeter in High Energy Physics: Past and Present

Experiment C. Ball L3 CLEO II KTeV BaBar BELLE CMS

Accelerator SPEAR LEP CESR Tevatron PEP II KEK LHC

Date 75–85 80–00 80–00 90–10 94–10 94–10 95–20

Crystal Type NaI(Tl) BGO CsI(Tl) CsI CsI(Tl) CsI(Tl) PbWO4

B-Field (Tesla) - 0.5 1.5 - 1.5 1.0 4.0

Inner Radius (m) 0.254 0.55 1.0 - 1.0 1.25 1.29

Number of Crystals 672 11,400 7,800 3,300 6,580 8,800 76,000

Crystal Depth (X0) 16 22 16 27 16 to 17.5 16.2 25

Crystal Volume (m3) 1 1.5 7 2 5.9 9.5 11

L. Yield (p.e./MeV) 350 1,400 5,000 40 5,000 5,000 2

Photo-sensor PMT Si PD Si PD PMT Si PD Si PD APD†

Photo-sensor Gain Large 1 1 4,000 1 1 50

Noise/Can. (MeV) 0.05 0.8 0.5 Small 0.15 0.2 30

Dynamic Range 104 105 104 104 104 104 105

† Avalanche photo-diode.

This energy resolution can be decomposed to three contributions from photo-electron statistics (stochas-

tic), intrinsic shower leakage (stochastic and constant) and readout noise (noise). Result of electron beam

tests at CERN shows a good agreement with Equation 1 for two groups of 3 × 3 crystals, independent of

their impact position on the crystal front face [5]. Recent interest in homogeneous hadronic calorimeter

(HHCAL) extends crystal’s application to measurement of hadrons and jets with high resolution [6]. This

HHCAL detector concept adapts dual readout for both Cherenkov and scintillation light, which is exten-

sively studied recently by the Dream collaboration [7].

Section 2 of this paper describes optical and scintillation properties of heavy crystal scintillators com-

monly used in particle physics experiment. Fast and bright crystals discovered in the last two decades,

such as cerium doped lutetium oxyorthosilicate (Lu2(SiO4)O or LSO) [8], cerium doped lutetium yttrium

oxyorthosilicate (Lu2(1−x)Y2xSiO5, LYSO) [9] and cerium doped lanthanum tri-halides,e.g. LaCl3 and

LaBr3[10] are also covered. The expected performance of an LSO/LYSO electromagnetic calorimeter is

elaborated in Section 3. Section 4 discusses candidate crystals for the HHCAL detector concept.

2. Properties of Crystal Scintillators

Table 2 lists basic properties of heavy crystals with mass production capability: NaI(Tl), CsI(Tl), BaF2,

CeF3, bismuth gemanade (Bi4Ge3O12 or BGO), lead tungstate (PbWO4 or PWO), LSO/LYSO [11] and

PbF2. All, except PbF2, are scintillators with the characteristics of their scintillation light listed. All, except

CeF3, have either been used in, or actively pursued for, high energy and nuclear physics experiments, which

are also listed in the table. The experiment name in bold indicates the future crystal calorimeters in the next

decade. LSO and LYSO crystals are also widely used in the medical industry. Mass production capabilities

exist for all these crystals.

Figure 1 is a photo showing twelve crystal scintillator samples. In addition to samples listed in Table 2

pure CsI, CsI(Na), LYSO as well as LaCl3 and LaBr3 are also shown in this photo although the last two are

not yet in mass production stage. Samples are arranged in an order of their density, or radiation length. All

non-hygroscopic samples are wrapped with white Tyvek paper as reflector. Hygroscopic NaI, CsI, LaBr3
and LaCl3 are sealed in package with two ends made of quartz windows of 3 or 5 mm thick to avoid surface

degradation. To minimize uncertainties in light output measurement caused by the sample size dependence

all samples have a cubic shape of 1.5 × 1.5 × 1.5 X3
0, except NaI(Tl) and LaCl3 which are a cylinder with

a length of 1.5 X0 and areas at two ends equaling to 1.5 × 1.5 X2
0 to match the 2 inch diameter of the PMT

cathode.
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Table 2. Properties of Heavy Crystal with Mass Production Capability

Crystal NaI(Tl) CsI(Tl) BaF2 CeF3 BGO PbWO4 LSO(Ce) PbF2

Density (g/cm3) 3.67 4.51 4.89 6.16 7.13 8.3 7.40 7.77

Melting Point (◦C) 651 621 1280 1460 1050 1123 2050 824

Radiation Length (cm) 2.59 1.86 2.03 1.70 1.12 0.89 1.14 0.93

Molière Radius (cm) 4.13 3.57 3.10 2.41 2.23 2.00 2.07 2.21

Interaction Length (cm) 42.9 39.3 30.7 23.2 22.7 20.7 20.9 21.0

Refractive Indexa 1.85 1.79 1.50 1.62 2.15 2.20 1.82 1.82

Hygroscopicity Yes Slight No No No No No No

Luminescenceb (nm) 410 560 300 340 480 425 420 ?
(at Peak) 220 300 420

Decay Timeb (ns) 245 1220 650 30 300 30 40 ?
0.9 10

Light Yieldb,c 100 165 36 7.3 21 0.30 85 ?
4.1 0.077

d(LY)/dTb,d (%/◦C) -0.2 0.4 -1.9 ∼0 -0.9 -2.5 -0.2 ?

0.1

Experiment Crystal CLEO TAPS - L3 CMS Mu2e A4

Ball BaBar BELLE ALICE SuperB HHCAL?

BELLE PrimEx SLHC?

BES III Panda

a At the wavelength of the emission maximum.
b Top line: slow component, bottom line: fast component.
c Relative light yield of samples of 1.5 X0 and with the PMT quantum efficiency taken out.
d At room temperature.

Figure 2 shows a comparison of the transmittance, emission and excitation spectra for ten samples. The

solid black dots in these plots are the theoretical limit of the transmittance, which is calculated by using

corresponding refractive index as a function of wavelength taking into account multiple bounces between

the two parallel end surfaces and assuming no internal absorption [12]. Most samples, except LaBr3 and

PWO LSO LYSO BGO BaF2
CeF3

CsI CsI(Na) CsI(Tl) LaBr3(Ce) NaI(Tl)

LaCl3(Ce)

Fig. 1. A photo shows twelve crystal scintillators with dimension of 1.5 X0.
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Fig. 2. The excitation (red) and emission (blue) spectra (left scale) and the transmittance (green) spectra (right scale) are shown as a

function of wavelength for ten crystal scintillators. The solid black dots are the theoretical limit of the transmittance.

LaCl3, have their transmittance approaching the theoretical limits, indicating negligible internal absorption.

The poor transmittance measured for LaBr3 and LaCl3 samples is probably due to scattering centers inside

these samples. It is interesting to note that BaF2, BGO, NaI(Tl), CsI(Tl) and PbWO4 have their emission

spectra well within the transparent region showing no obvious self-absorption effect. The UV absorption

edge in the transmittance spectra of LSO, LYSO, CeF3, LaBr3 and LaCl3, however, cuts into the emission

spectra and thus affects crystal’s light output. This self-absorption effect is more seriously in long crystal

samples used in high energy and nuclear physics experiment as extensively discussed for LSO and LYSO

crystals [13]. We also note that the values of the cut-off wavelength, at which the transmittance data show

50% of that at 800 nm, are 140 nm, 280 nm, 293 nm, 315 nm, 318 nm, 342 nm,358 nm, 365 nm and 390 nm

for BaF2, CsI, CeF3, BGO, CsI(Na), PWO, CsI(Tl), NaI(Tl) and LSO/LYSO respectively, while it is 250

nm for PbF2.

Figure 3 shows the 137Cs γ-ray pulse hight spectra measured by a Hamamatsu R1306 PMT with bi-

alkali cathode for twelve crystal samples. Also shown in these figures are the corresponding FWHM energy

resolution (E.R.). γ-ray spectroscopy with a few percents resolution is required to identify isotopes for the

homeland security applications. It is clear that only LaBr3 approaches this requirement. All other crystals

do not provide sufficient energy resolution at low energies.

1000

2000
LaBr3:Ce

Source: Cs-137

By bialkali PMT

E.R.: 3.7% LaCl3:Ce E.R.: 5.1% NaI:Tl E.R.: 7.4% CsI:Tl E.R.: 7.9% CsI:Na E.R.: 8.9% LSO:Ce E.R.: 9.1%

1000

2000

0 200 400 600

LYSO:Ce E.R.: 9.3%

0 200 400 600

BGO E.R.: 10.8%

0 200 400 600

BaF2 E.R.: 13.9%

0 200 400 600

CsI E.R.: 25.1%

0 200 400 600

CeF3 E.R.: 28.5%

0 200 400 600

PWO E.R.: 75%

Channel Number

C
ou

nt
s

Fig. 3. 137Cs γ-ray pulse hight spectra measured by a Hamamatsu R1306 PMT are shown for twelve crystal samples. The numerical

values of the FWHM resolution (E.R.) are also shown in the figure.
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Fig. 4. Light output measured by using a XP2254b PMT is shown as a function of integration time for six fast (Left) and six slow

(Right) crystal scintillators.

Figure 4 shows light output in photo-electrons per MeV energy deposition as a function of the integration

time, measured by using a Photonis XP2254b PMT with multi-alkali photo cathode, for six fast crystal

scintillators (Left): LaBr3, LSO, LYSO, CeF3, un-doped CsI and PbWO4 and six slow crystal scintillators

(Right): NaI(Tl), CsI(Na), CsI(Tl), LaCl3, BaF2 and BGO. The corresponding fits to the exponentials and

their numerical results are also shown in these figures. The un-doped CsI, PbWO4, LaCl3 and BaF2 crystals

are observed to have two decay components. Despite its poor transmittance the cerium doped LaBr3 is

noticed by its bright fast scintillation, leading to the excellent energy resolution for the γ-ray spectroscopic

applications. The LSO and LYSO samples have consistent fast decay time (∼40 ns) and photo-electron

yield, which is 6 and 230 times of BGO and PbWO4 respectively.

Since the quantum efficiency of the PMT used for the light output measurement is a function of wave-

length, it should be taken out to directly compare crystal’s light output. Figure 5 shows typical quantum

efficiency as a function of wavelength for a PMT with bi-alkali cathode (Hamamatsu R1306) and a PMT

with multi-alkali cathode (Photonis 2254B), a Si APD (Hamamatsu S8664) and a Si PIN PD (Hamamatsu

0

0.05

0.1

0.15

0.2

300 400 500 600 700

Photonis PMT, XP2254B
BGO: Q

⎯
E
⎯

=4.7 ± 0.2%
LSO/LYSO: Q

⎯
E
⎯

=7.2 ± 0.4%
CsI(Tl): Q

⎯
E
⎯

=3.5 ± 0.2%

Wavelength (nm)

Q
ua

nt
um

 E
ffi

ci
en

cy

Hamamatsu PMT, R1306
BGO: Q

⎯
E
⎯

=8.0 ± 0.4%
LSO/LYSO: Q

⎯
E
⎯

=12.9 ± 0.6%
CsI(Tl): Q

⎯
E
⎯

=5.0 ± 0.3%

LSO/LYSO

BGO

CsI(Tl)

0

0.25

0.5

0.75

1

300 400 500 600 700 800

Hamamatsu APD, S8664-55
BGO: Q

⎯
E
⎯

=82 ± 4%
LSO/LYSO: Q

⎯
E
⎯

=75 ± 4%
CsI(Tl): Q

⎯
E
⎯

=84 ± 4%

LSO/LYSO

BGO

CsI(Tl)

Wavelength (nm)

Q
ua

nt
um

 E
ffi

ci
en

cy

Hamamatsu PD, S2744
BGO: Q

⎯
E
⎯

=75 ± 4%
LSO/LYSO: Q

⎯
E
⎯

=59 ± 3%
CsI(Tl): Q

⎯
E
⎯

=80 ± 4%

Fig. 5. Left: Quantum efficiencies of a Hamamatsu 1306 PMT with bi-alkali cathode (open circles) and a Photonis 2254B PMT with

multi-alkali cathode (solid dots) are shown as a function of wavelength together with the emission spectra of the LSO/LYSO, BGO

and CsI(Tl) samples, where the area under the emission curves is proportional to their corresponding absolute light output. Right: The

same for a Hamamatsu S8664 Si APD (open circles) and a Hamamatsu S2744 Si PIN diode (solid dots).
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S2744). The emission spectra of LSO/LYSO, BGO and CsI(Tl) crystals are also shown in these figures. The

light output values in Table 2 are listed with the PMT quantum efficiency taken out. The light output of LSO

and LYSO crystals is a factor of 4 and 200 of that of BGO and PbWO4 respectively.

Scintillation light yield of crystals may also depends on the temperature. Fig 6 shows light output

variations for twelve crystal samples between 15◦C and 25◦C. The corresponding temperature coefficients

obtained from linear fits are also listed in the figure. The numerical result of these fits is also listed in Table 2.
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Fig. 6. Light output temperature coefficient obtained from linear fits between 15◦C and 25◦C for twelve crystal scintillators.

3. LSO/LYSO Crystal Electromagnetic Calorimeter

Because of their board application in medical industry large size LSO and LYSO crystals with consistent

optical and scintillation properties have been routinely grown [13]. Figure 7 shows four long crystal samples

of 2.5 × 2.5 × 20 cm3. Figure 8 shows the spectra of 0.51 MeV γ-rays from a 22Na source observed with

coincidence triggers [13]. The readout devices used are a Hamamatsu R1306 PMT (Left) and 2 Hamamatsu

Fig. 7. A photo shows four long crystal samples with dimension of 2.5 × 2.5 × 20 cm3.
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Fig. 8. The 0.511 MeV γ-rays spectra from a 22Na source measured with a coincidence trigger using a Hamamatsu R1306 PMT (Left)

and two Hamamatsu S8664-55 APDs (Right) for long BGO, LSO and LYSO samples of 2.5 × 2.5 × 20 cm3 size.

S8664-55 APDs (Right). The FWHM resolution for the 0.51 MeV γ-ray with the PMT readout is about 12%

to 13% for these long samples, which can be compared to 15% for the BGO sample. With APD readout,

the γ-ray peaks are clearly visible. The energy equivalent readout noise was less than 40 keV for these long

LSO and LYSO samples.

LSO/LYSO crystals is also found to be much more radiation hard than other crystals commonly used

in high energy and nuclear physics experiment, such as BGO, CsI(Tl) and PbWO4 [14]. Their scintillation

mechanism is not damaged by γ-ray irradiation. Radiation damage in LSO and LYSO crystals recovers very

slow under room temperature but can be completely cured by thermal annealing at 300◦C for ten hours. The

γ-ray induced readout noise was estimated to be about 0.2 MeV and 1 MeV equivalent respectively in a
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Fig. 9. Left: Transmittance spectra are shown as a function of wavelength in an expanded scale together with the photo-luminescence

spectra for three long LSO and LYSO samples before and after the irradiation with integrated doses of 102, 104 and 106 rad. Right:

Normalized light output with ID (top) and NID (bottom) end coupled to the readout device of two S8664-55 APDs is shown as a

function of the integration dose for five long LSO and LYSO samples.
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radiation environment of 15 rad/h and 500 rad/h for LSO and LYSO samples of 2.5× 2.5 × 20 cm3.

Figure 9 (Left) shows an expanded view of the longitudinal transmittance spectra for three samples be-

fore and after several steps of the γ-ray irradiation with integrated dose of 102, 104 and 106 rad. Also shown

in the figure is the corresponding numerical values of the photo-luminescence weighted longitudinal trans-

mittance (EWLT ). Figure 9 (Right) shows the normalized average light output as a function of integrated

dose for five long samples from various vendors. It is interesting to note that all samples show consistent

radiation resistance with degradations of both the light output and transmittance at 10 to 15% level after

γ-ray irradiation with an integrated dose of 1 Mrad.

Assuming the same APD based readout scheme as the CMS PbWO4 calorimeter, the expected energy

resolution of an LSO/LYSO crystal based electromagnetic calorimeter would be

σE/E = 2%/
√

E ⊕ 0.5% ⊕ 0.001/E, (3)

which represents a fast calorimeter over large dynamic range with low noise. Such calorimeter would

provide great physics discovery potential for high energy physics experiments in the proposed SuperB fac-

tory [15] as well as the proposed International Linear Collider (ILC) [16]. Because of its fast scintillation and

good radiation hardness LYSO crystals are also proposed for the CMS PbWO4 crystal endcap calorimeter

upgrade at SLHC [17].

4. Homogeneous Hadronic Calorimeter Detector Concept

Crystals have recently been proposed to construct a homogeneous calorimeter, including both electro-

magnetic and hadronic part [6]. This HHCAL detector concept removes the traditional boundary between

ECAL and HCAL, so eliminates the effect of dead materials in the middle of the hadronic shower devel-

opment. It takes advantage of recently implemented dual readout approach to measure both Cherenkov

and scintillation light to achieve good energy resolution for hadronic jets measurement [7]. Because of the

un-precedent volume (70 to 100 m3) foreseen for such calorimeter [6], the crystal material must be dense

(to reduce the volume), UV transparent (to effective collecting the Cherenkov light) and allows a clear

discrimination between the Cherenkov and scintillation light.

Figure 10 (Left) shows samples of three 5× 5× 5 cm3 crystal samples: PbF2, BGO and PWO. Crystals

of this size can be seen as typical building block for a crystal hadronic calorimeter. All material are dense

(PbF2 has of a density of 7.7 g/cm3) with a nuclear interaction length about 22 cm. Figure 10 (Right)

shows the transmittance spectra of PbF2 (green), BGO (blue), PWO (red) and a UG11 filter (black) as a

function of wavelength together with the Cherenkov emission spectrum (dashed blue). The UG 11 filter

can be used to select the Cherenkov light with small or no scintillation contamination. Also shown in this
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Fig. 10. Left: A photo shows three crystal samples of 5 × 5 × 5 cm3 investigated for the homogeneous hadronic calorimeter concept.

Right: The transmittance spectra of PbF2 (green), BGO (blue), PWO (red) and UG11 (black) are shown as a function of wavelength.

Also shown in this figure are the Cherenkov emission spectrum (dashed blue) and the normalized figure of merit for the Cherenkov

light measurement with the UG11 filter.
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figure is the normalized figure of merit for the Cherenkov measurement (TWEM) by using the UG11 filter,

which is defined as the transmittance weighted Cherenkov emission spectrum. Their numerical values are

1.0:0.53:0.21, which would be 1.0:0.82:0.75 without using the UG11 filter. Among these materials PbF2 is

the most effect in collecting the Cherenkov light because of its good UV transmission.
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Fig. 11. Left: A schematic showing a simple set-up used to measure cosmic-ray generated Cherenkov and scintillation light simulta-

neously by using two Hamamatsu R2059 PMT. The light pulses are recorded by an Agilent 6052A digital scope. Digital scope traces

of the scintillation light front edge measured by a Hamamatsu R2059 PMT with GG400 filter for the BGO (Middle) and PWO (Right)

samples.

Effective discrimination between Cherenkov and scintillation light can be realized by using optical filter.

Figure 11 (Left) shows a set-up used to investigate Cherenkov light collection and its separation from the

scintillation light. Cosmic-rays were triggered by two finger counters with coincidence. The Cherenkov

and scintillation light pulses generated by cosmic-rays were measured simultaneously by two Hamamatsu

R2059 PMT coupled to the sample through optical filters UG11 and GG400. GG400 is a low-pass filter with

cut-off at 400 nm. The UG11 filter is used to select the Cherenkov light as shown in Figure 10 (Right). The

GG400 filter is used to select the scintillation light with small contamination of the Cherenkov light. The

output of these two PMTs were digitized by an Agilent 6052A digital scope. Figure 11 (Middle and Right)

shows the front edge of the scintillation light pulse from BGO and PWO, observed through the GG400 filter.

Their delay from the trigger (td) and rise time (tr) are identical with numerical values of 6.2 ns and 1.9 ns

respectively. Figure 12 shows the Cherenkov light pulse shape observed for PbF2 (Left), BGO (Middle) and

PWO (Right) through the UG11 filter. All pulses have consistent time structure in the delay (6.1 ns), the

rise time (1.8 ns), the fall time (4.2 ns) and the FWHM width (3.0 ns). It is interesting to note that there is
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Fig. 12. Digital scope traces of Cherenkov light pulse measured by a Hamamatsu R2059 PMT with UG11 filter for the PbF2 (Left),

BGO (Middle) and PWO (Right) samples.



 Ren-yuan Zhu  /  Physics Procedia   37  ( 2012 )  372 – 383 381

no difference observed in the delay and rise time between the Cherenkov and scintillation light, indicating

that only the light pulse width and fall time are useful for the discrimination between the Cherenkov and

scintillation light. A slow scintillator may actually help this discrimination. The ratio of Cherenkov versus

scintillation light was measured to be 1.55% and 22% for BGO and PWO respectively. These values are

consistent with the scintillation light yield shown in Table 2, the emission weighed quantum efficiency of

bi-alkali cathode of the Hamamatsu R2059 PMT shown in Figure 5 (Left) and the TWEM values shown in

Figure 10 (Right).

Based upon our experience accumulated in building crystal ECAL, an initial detector design with point-

ing geometry was proposed. It may provide a better resolutions for both energy and position measurements,

and thus a good jet mass reconstruction. Figure 13 shows a schematic of a typical HHCAL cell with point-

ing geometry [18]. It is similar to a typical calorimeter cell of a crystal ECAL, but has several longitudinal

segments with a total length of about 1 m. By using dense active materials such detector depth would pro-

vide about 5 nuclear interaction lengths, adequate for the hadronic jet energy reconstruction. The readout

devices are mounted on the side faces of these crystal segments. Due to the recent development in compact

solid state readout devices, e.g. silicon PMT, such a readout scheme is now feasible.

2
5x5 cm

10x10 cm
2

100 cm

10 cm

Fig. 13. A schematic showing a typical cell for the HHCAL detector concept with pointing geometry [18].

Because of the huge volume required for the HHCAL detector concept development of cost-effective

material is crucial. Table 3 summarized the basic property of candidate crystals being considered for this

detector concept. While BGO is the best material to be used for such calorimeter its mass production cost

is prohibitive. While PWO, PbF2, PbFCl and BSO are under investigation, PbF2 and PbFCl are preferred

because of its low melting point and raw material cost.

Table 3. Candidate Crystals for the HHCAL Detector Concept

Parameters BGO PWO PbF2 PbFCl BSO

Density (g/cm3) 7.13 8.29 7.77 7.11 6.8

λI (cm) 22.8 20.7 21.0 24.3 23.1

n @ λmax 2.15 2.20 1.82 2.15 2.06

τdecay (ns) 300 30/10 ? 30 100

λmax (nm) 480 425/420 ? 420 470

Cut-Off λ (nm) 310 350 250 280 300

Light Output (%) 100 1.4/0.37 ? 17 20

Melting Point (◦C) 1050 1123 842 608 1030

Raw Material Cost (%) 100 49 29 29 47

R&D is actively pursued by the high energy physics community for additional materials. One approach

is to develop PWO crystals with slow scintillation emission . Green (560 nm) and slow emission with a few

μsec decay time was observed by selective doping in PWO crystals [19]. Such crystals were reported to

have a factor of ten more light than yttrium doped PWO crystals used in high energy physics experiment.
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This slow and green scintillation would be desirable for this application.
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Fig. 14. The excitation (red dots) and Photo- (blue dashes) and X- (black lines) luminescence spectra are shown as a function of

wavelength for the PbF2 samples doped with Er, Eu, Gd, Ho, Pr, Sm and Tb as well as a reference CsI(Tl) sample.

Another approach is to develop scintillating PbF2 crystals by selective doping. Observations of fast

scintillation in Gd doped PbF2 crystals were reported early by Shen and Woody [20, 21]. Our investigation

shows that rear earth doping introduces scintillation in PbF2, but not in the level can be measured by using

γ-ray source [22]. Figure 14 show the excitation, photo-luminescence and x-luminescence spectra for Er,

Eu, Gd, Ho, Pr, Sm and Tb doped PbF2 crystal samples. It is noted that some of these scintillation lights

is between 500 to 600 nm, which is desirable for Cherenkov/scintillation discrimination. Investigation is

continuing aiming at developing cost-effective materials for this concept.

The photo-luminescence decay time constant of these doped PbF2 samples was measured by using a
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Fig. 15. The photo-luminescence pulse shape (blue circles), corresponding fit to an exponential (red lines) and the decay time constant

are shown for the PbF2 samples doped with Er, Ho, Eu, Sm and Tb as well as a reference CsI(Tl) sample.



 Ren-yuan Zhu  /  Physics Procedia   37  ( 2012 )  372 – 383 383

pulsed laser as the excitation source. Figure 15 shows the photo-luminescence pulse shape (blue circles),

the corresponding exponential fit (red lines) and the decay time constant for the PbF2 samples doped with

Er, Ho, Eu, Sm and Tb as well as a reference CsI(Tl) sample. The photoluminescence intensity of PbF2

samples doped with Pr and Gd are too weak to be useful to extract the decay time constant. The decay time

constants for the PbF2 samples doped with Er, Ho, Eu, Sm and Tb were found at a millisecond scale as

expected from the f-f transition of these rare earth elements [23]. These time constants are too long to be

useful for high energy physics experiments. The work will concentrate on selective rare earth doping, other

PbF2 phases and mixtures [22].

5. Summary

Precision crystal electromagnetic calorimeters have been an important part of high energy physics de-

tector. The availability of mass production capability of large size LSO and LYSO crystals provides an

opportunity to build a LSO/LYSO crystal electromagnetic calorimeter with good energy resolution over a

large dynamic range down to MeV level. Such calorimeter, if built, would greatly enhance the physics

discovery potential for high energy and nuclear physics experiments in the next decade.

Recent interest in high energy physics community to pursue homogeneous hadronic calorimeter with

dual readout opens a new area of crystal calorimetry to achieve good energy resolution for hadronic jets in

the next decade. The main challenge for this concept is to develop cost effective heavy scintillators with

good UV transmission and excellent Cherenkov/scintillation discrimination. Dense crystals, scintillating

glasses and ceramics offer a very attractive implementation for this detector concept.
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