Chapter 1

Mathematical Logic

In its most basic form, Mathematics is the practice of assigning truth to well-
defined statements. In this course, we will develop the skills to use known true
statements to create newer, more complicated true statements. Thus, we begin
our course with how to use logic to connect what we know to what we wish to
know.

1.1 Logical Statements

The kinds of statements studied by mathematicians are called logical state-
ments, which are defined as meaningful sentences that can be either true or
false. It important to note that we need not know if a statement is actually true
or false to be a statement; we need to only know that it can be either true (T)
or false (F). In fact, the job of Mathematicians is to decide which mathematical
statements are true or false using a proof.

Below are examples and non-examples of mathematical statements:

- “31 is a prime number” is a mathematical statement (which happens to
be true).

- “r > 17 is a mathematical statement, which is either true or false, de-
pending on the particular  we have in mind.

- “x 4+ 1”7 is not a mathematical statement because it cannot be given a
truth value. Notice that « + 1 is not even a complete sentence (as it lacks
a verb).

- “Factor the polynomial 22 + 2z + 17 is not a mathematical statement as
it cannot be assigned a truth value.

- “There are infinitely many prime numbers” is a mathematical statement
(which can be proven to be true)

- “There are infinitely many prime numbers p such that p+ 2 is also prime”
is also a mathematical statement, but its truth value is not yet know.
Such statements, which are believed to be true, are called conjectures.
This particular example is known as the “Twin Primes Conjecture” and
has alluded mathematicians for almost two hundred years.

In what follows, we will begin to manipulate logical statements and their
truth values to construct more complicated statements from simpler pieces.



1.1.1 Negations

If p is a mathematical statement, then its negation, written —p is the exact
opposite statement, which is usually obtained by placing a “not” in the gram-
matically appropriate placed. For example, if p is the statement “20 is a prime
number”, then its negation —p is the statement “20 is not a prime number.
Notice that our original statement p has a truth value of False (F) and that —p
has a truth value of true (T) since 20 is not prime.

In general, negating a statement will always switch its truth value. Thus,
if pis T, then —p is F; if p is F, then —p is T. Below are the negations of the
previous mathematical statement examples:

- If pis “31 is a prime number”, then —p is “31 is not a prime number” or,
equivalently, that “31 is composite”. Notice that p has a truth value of T
and —p has a truth value of F.

- If pis “a > 1” then —p is that “x 2 1”7 or, equivalently, “x < 1”. Again,
if p was T for the £ we had in mind, then —p will be F for that same =x.

- If p is “There are infinitely many primes,” then —p is “There are finitely
many primes,” a false statement.

- If p is the Twin Primes Conjecture “There are infinitely many prime num-
bers p such that p+ 2 is also prime”, then —p is the statement “There are
only finitely many primes p such that p 4+ 2 is also prime.

1.1.2 Compound Statements

If we are given two statements p and ¢, then we can build a more complex
statement called compound statements by joining p and ¢ together with the
conjunctions “and” or “or”. The truth value of these compound statements will
depend, in a natural way, on the individual truth values of p and q.

The conjunction of the statements p and ¢ is the compound statement read
“p and ¢” and denoted by p A q. As in usual English, the statement p A ¢ will
be true only when both p and ¢ are true. In other word, if even one of them is
false, then p A ¢ is false as well. Below are some examples of conjunctions:

- If pis “31 is a prime number” and ¢ is “31 is positive,” then the conjunction
pAqis “31 is a prime number and positive”. Since both p and g are T,
the conjunction p A ¢ is also T.

- If p is “There are infinitely many primes” and ¢ is “The sun is a planet”,
the p A ¢ is “There are infinitely many primes, an the sun is a planet,
which is F because ¢ is F.

If we use “or” to join our two statement p and ¢, then we get the disjunc-
tion, read “p or ¢” and written p V ¢. It is a little easier for p V ¢ to be true:
at least one of p or ¢ (or both) need to be true. Thus, the only way that p V ¢
will be F is if both p and g are F. Notice that since pV ¢ is T when both p and
q, disjunction is more akin to what computer scientists call inclusive or. Below
are some examples of disjunctions.

- If p is “25 is a perfect square,” and ¢ is “25 is divisible by 3”7, then p V ¢
is “25 is a perfect square or is divisible by 3”7, which is true since p is true
(even though ¢ is not).

- If pis “25 is negative” and ¢ is “25 is prime”, then pV ¢ is the disjunction
”p is negative or prime,” which is false since both p and 1 are false.



We can further construct complicated logical statements by including nega-
tions in our compound statements. For example, if we have a statement p, and
form its conjunction with —p, then we see that p A —p, which is always false,
no matter the truth value of p. To see this, note that p and —p always have
opposite truth values. Thus, p A =p will never have both terms being the same
truth value and thus will always be F. Such statements, which always have a
truth value of F are called contradictions. If instead we join p and —p via a
disjunction, we see that the opposite happens: p V —p is always F, no matter
what the value of p is. This occurs, of course, because p and —p have opposite
truth values and thus one of them is always T. Such statement which are always
true are called tautologies.

1.1.3 DeMorgan’s Logic Laws

Above, we saw that we obtained interesting truth values when we included
negations inside of a conjunction or a disjunction. If we instead take negations
of compound statements, we can ask if they are, in some way, equal to some
other logical statement that includes negations, conjunctions, and disjunctions.
Specifically, if p and ¢ are logical statements, then consider the negation of
their conjunction:
~(p A ).

In other words, we wish to better understand what is meant by “not p and ¢”.
Notice, that

- for =(pAq) to be T, p A ¢ must be F, and thus at least one of p or ¢ must
be F.

- for =(pAq) to be F, p A g must be T, and thus at least one of p of ¢ must
be T.

Notice that, if we compare —=(p A q) to (—p) V (—¢), then they both have the
same truth values given an initial choice of T/F for both p and ¢q. A pair of
statement statement that carry the same truth values given identical inputs are
called logically equivalent and are considered interchangeable in the field of
logic. Thus, we have that =(p A ¢) is logically equivalent to (—p) V (—¢) and can
state one of DeMorgan’s Logic Laws symbolically as

~(pAq) = (=p)V (—g).

Thus, negating a conjunction is the disjunction of two negations. In English, it
is read “Not p and ¢” is logically the same as “Not p or not ¢”. For example,

- The negation of the conjunction “31 is prime and positive” is equivalent
to the statement “31 is composite or 31 is non-negative”.

If we instead choose to negate a disjunction, then another one of DeMorgan’s
Logic Laws tell us that the negation of a disjunction will give the conjunction of
two negations. Symbolically, we have the second of DeMorgan’s Logic Laws:

~(pVq) = (=p) A (—q).
Again, we see that negation swaps an ‘or’ for an ’and’. For example,

- The statement “21 is not multiple of 4 or 5” is logically equivalent to “21
is not a multiple of 4, and 21 is not a multiple of 5.”



1.1.4 “If-Then” Statements

Most of the statements that we will encounter in this proof course will come
as “If-then” statements, called conditional statements. If p and ¢ are state-
ments, then the statement “If p, then ¢” is given denoted by p = ¢. If-then
statements work in the following way: for the entire statement “If p, then ¢” to
be true, then whenever p is T, then ¢ should be T; however, if p is F, then ¢
can be either T or F and p = ¢ will still be T. For example,

- If p is “25 is a perfect square”, and ¢ is “25 is composite,” then p = ¢ is
T since p is T and thus g is T.

- If pis “25 is a perfect square,” and ¢ is “25 is prime”, then p = q is F
since p is T but ¢ is F.

- If pis “25 is prime” and ¢ is “25 is even”, then p = ¢ is T since p is F. In
fact, ¢ can be either T or F. Since p is F, p = ¢ is always true.

1.1.5 Direct Proofs of If-Then Statements

The more interesting If-then statements usually include a variable. For example,
consider a statement like “If z > 1, then 22 > 1.” It is precisely these kinds of
statements that we will focus on in this course. For this statement, depending
on the value of z, the p (hypothesis) statement “z > 1”7 will be either T of F.
Similarly, the ¢ (conslusion) statement 22 > 1 will either be T of F. For our
2 = ¢ statement to be T, we must show that whenever x satisfies x > 1, then it
must also satisfy 22 > 1. If > 1 is not true, then the entire If-then statement
is automatically true. Thus, we are only interested in situations where x > 1 is
satisfied. So, to verify that the conditional statement “If z > 1, then 22 > 1”
is true, we must begin our mathematical argument (known as a proof) by
assuming that > 1. Then, we will use known algebraic laws to conclude that
2 > 1.

So, we will see our first proof that a mathematical statement is true. Before
we begin, since this course focuses on proof-writing, we will not just give our
statement and prove it; instead, we will offer a Discussion section, where the
proof-methodologies and thought processed are discussed. Then, after appro-
priately outlining and planning out our arguments, we will implement the proof
in the Proof section. You will notice that our proofs are written in full, English
sentences with proper syntax and grammar.

Proposition. If z > 1, then 2% > 1.
Discussion.

We will assume: z > 1

We will show: z? > 1.

What we will do: We will begin with the fact that z > 1 and use the well-
known algebraic rule that if @ > b and ¢ > d and all numbers are positive, then
ac > bd.

Proof. Assume x > 1. Since x > 1 > 0, then both x and 1 are positive.
Thus, multiplying the inequality = > 1 with itself yields 22 > 1-1 = 1, which is
equivalent to 22 > 1. Thus, 22 > 1.

O

Of course, our mathematical statements will be significantly more compli-
cated than this example. The above was an illustration of what is expected of



a proof and how we use the logic behind mathematical statements to develop
proof techniques.

Now that our proof is complete, we can confidently (mathematically) say
that anytime we have a number x such that z > 1, then we can automatically
conclude that 2 > 1. Notice that we indicate that our proof is complete by
placing a [ to the bottom right of the end of the proof.

1.2 Manipulating Conditional Statements

Given the importance of If-then statements, we wish to understand which other
conditional statements are logically equivalent to p = ¢. To this end, we will
investigate three different possibilities to the conditional statement p = ¢:

- The Converse: ¢ = p
- The Inverse: —p = —¢q

- The Contrapositive: ~¢ = —p

To investigate these different possibilities of conditional statements that
might be logically equivalent to the original statement p = ¢, we will use the
above example of “If © > 1, then z2 > 17. In this example, p is “z > 17 and
q is £2 > 1. Since we proved above that conditional statement, then our math-
ematical statement is always true. Thus, if inverse, converse, or contrapositive
is not always true, then it cannot be logically equivalent to p = ¢

1.2.1 The Converse and Inverse

For our conditional statement, the converse is ¢ = p, which is read as “If 22 > 1,
then & > 1”7. However, we note that for z = —3, the hypothesis 22 > 1 is T;
however, z > 1 is F. Thus, the converse is not true and thus cannot be logically
equivalent to the original p = q.

Next, we investigate the inverse statement. Before we begin, note that —p
is the statement “z < 1”7 and # ¢ is the statement “r? <17 So, the inverse
statement is —p = —¢q and is read “If z < 1, then 22 < 1.” Again, if we choose
x = —3 we see that the hypothesis is T, yet the conclusion is F. Thus, the
converse cannot be logically equivalent to the original conditional statement.

1.2.2 The Contrapositive

We now investigate the contrapositive —-q = —p to our original conditional
statement p = ¢. In our example, it would read “If 22 < 1, then z < 1.” Now,
our previous counterexample of z = —3 no longer works since it does not make
our hypothesis 22 < 1 true. In fact, if we choose a variety of  values satisfying
the hypothesis z2 < 1, it is always true that z < 1. This leads us to believe that
the original conditional statement is logically equivalent to the contrapositive.
In fact, we have that
p=q=-q= —p.

Thus, if we wish to prove the statement p = ¢, then we could instead prove
—q = —p. Proving the converse to be true would mean that the original condi-
tional statement is true as well. The technique of proving the contrapositive is
an extremely helpful one. Below are some examples of conditional statements
and their (logically equivalent) contrapositives.



- p=q: “If a polygon is a square, it is also a rectangle”; its contrapositive
—p = —¢q: “If a polygon is not a rectangle, then it is not a square”. The
two statements are true.

- p = q: “If nis a multiple of 6, then n is even.” Its contrapositive -¢ = —p:
“If n is odd, then it is not a multiple of 6.

- p= q “If nis even, then n + 3 is odd.” Its contrapositive =q¢ = —p: “If
n + 3 is even, then n is odd.”

We investigate this next example of finding a contrapositive in a bit more
depth. Consider the statement p = ¢ given by “If a is a rational number and
b is an irrational number, then a + b is an irrational number.” In this case, p is
the statement “a is a rational number and b is an irrational number”, which is
a conjunction; the statement ¢ is “a + b is an irrational number.” To find the
contrapositive, we must form —q = —p. We can easily see that —q is given by
“a + b is a rational number.” Computing —p is a little more subtle. Since p is a
conjunction, to negate it, we must use DeMorgan’s Logic Laws:

—( a is a rational number A b is an irrational number ) =
—(a is a rational number) V —( b is an irrational number ) =
a is an irrational number of b is a rational number.

Thus, the contrapositive to

If a is a rational number and b is an irrational number,
then a + b is an irrational number.

is logically equivalent to the contrapositive

If a + b is a rational number,
then a is an irrational number or b is a rational number.

1.2.3 Proof by Contrapositive

We will now prove a conditional statement p = ¢ by instead proving the logically
equivalent contrapositive -q = —p.

medskip
Proposition. If 23 < 0, then = < 0.

Discussion.

The original conditional statement is p = ¢, with p being “z® < 0” and ¢ being
“r < 0. This statement is rather difficult to work with because, if we were to
prove it directly, we would begin with knowing a fact about 3, not about z.
In the contrapositive, however, this will change. So, the contrapositive can be
constructed by first noting that —p is “z® > 0 and that —q is = > 0. Thus, the
contrapositive is the statement —p = —¢q given by

If # > 0, then z® > 0.

Thus, we will prove this easier-to-handle contrapositive; proving this will prove
the original (and more complicated) conditional statement.

We will assume: x>0

We will show: z3 > 0.

What we will do: We will state at the beginning that we will prove instead
the contrapositive. Directly proving the contrapositive is very straightforward.



Proof. To prove our statement, we will instead prove the contrapositive, which
states “If z > 0, then 23 > 0.” Thus, we assume that z > 0. Since all terms are
non-negative, we can multiply x > 0 by itself thrice to obtain z-z -2 >0-0-0,
which is equivalent to 23 > 0. Thus, since the contrapositive is true, the original
statement “If 23 < 0, then = < 0 is also true, as desired.

|

1.2.4 “If and Only If” Statements

For the conditional statement p = ¢ to be true, we must show that whenever
the hypothesis p is true, then the conclusion ¢ must also be true. It is not
necessary that whenever ¢ is true that p must be true as well. If we do wish
to form a logical statement where the truth value of p and ¢ are identical, then
we can construct the biconditional statement “p if and only if ¢”, written
p<=4q.

We should think about the biconditional statement p < ¢ as two conditional
statements: p = ¢ and ¢ = p. Thus, when proving a biconditional statement
to be true, we must essentially prove that two conditional statements are true.

Consider the statement p < ¢ “n is even if and only if n? is even”. We will
prove that this statement is true by proving two statements:

- p=q: “If n is even, then n? is even.”
- ¢ = p: “If n? is even, then n is even.”

Before we begin with the proof, we will take this time to remember that
a number n is even if it can be written as n = 2k for some whole number k.
Furthermore, n is odd if it can be written as 2k + 1 for some whole number k.

Proposition. n is even if and only if n? is even.

Discussion. This biconditional statement will be broken up as p = ¢: “If n is
even, then n? is even”; and ¢ = p: “If n? is even, then n is even.” Notice that
the first conditinoal p = ¢ is a fairly straightforward proof obtained easily by
writing n = 2k and showing that n? = 2(whole number).

The other conditional statement, ¢ = p, is a little bit more complicated: “If
n? is even, then n is even.” Since the hypothesis of this statement gives infor-
mation about n?, we should consider the contrapositive, which would place the
statement about n in the hypothesis. So, we instead consider the contrapositive
of ¢ = p, we will get ~p = —¢: “If n is odd, then n? is odd.” Thus, we will
assume that n = 2k + 1 and use this to show that n? = 2(whole number) + 1.

Proof. To prove this biconditional statement, we will prove two conditional
statements.

First, we consider the statement “If n is even, then n? is even.” Since n is
even, we can write it as n = 2k, where k is a whole number. thus, n? = (2k)? =
4k? = 2(2k?). Since k is a whole number 2k? is also a whole number. Thus, we
n? is even.

The remaining statement to be proven is “If n? is even, then n is even. We
will instead prove its contrapositive “If n is odd, then n? is odd.” Since n is
odd, then we can write it as n = 2k + 1, where k is a whole number. Squaring,

we get that
n? = (2k + 1) = 4k* + 4k + 1 = 2(2k? + 2k) + 1.

Since k is a whole number 2k? + 2k is a whole number and thus n? is odd. Since
we have proven the contrapositive, the original statement “If n2 is even, then n
is even” is true as well.



Since we proved above the two conditional statements, the biconditional
statement “n is even if and only if n? is even” is proven.

O

1.3 Quantified Statements

For many statements involved a variable or parameter, it is useful to specify for
how many such values we mean the statement to be true. We investigate the
two major forms of quantified statements: those we wish to be valid for many
values of the parameter and those we wish to be valid for at least one value.

1.3.1 “For all” statements

If we consider the statement 22 > 0, it’s clear that this is true for all real

numbers. Thus, we can more precisely say that “For all € R, 22 > 0”. This
statement is called a universally quantified or a for all statement. This
statement says that the statement 22 > 0 is meant for all real numbers x (this
is what # € R means). The phrase “for all” is frequently notated by V.

In general, universally quantified statements are of the form

YV p(x),

where p(x) is some statement involving the variable z. Thus, to prove the
statement Vz p(x), we must prove that the statement p(x) is true for all values
of .

1.3.2 “There exists” statements

If we instead consider a statement like “3z — 1 = 07, it is clear that this is only
valid for one value of z. In these situations, where the mere existence of a value
for x satisfying some condition, we use an existential quantified or there
exists statement. Thus, we are more interested in statements like “There
exists an € R such that 3z — 1 = 0.” This statement means that there is at
least one value of x for which the statement “3x — 1 = 0 is true. The phrase
“there exists” is frequently notated by 3.
In general, existentially quantified statements are of the form

Jx p(x),

where, once again, p(z) is a statement involving the variable z. Thus, to prove
the statement 3z p(z) is true, we need to find at least one value of : that satisfies
p(z). Many times, we go further by asking that there be ezactly one value of
x satisfying p(z). In these kinds of statement, we ask for a unigque value of x
satisfying p(z). These unique existence statement are notated by

Alp(z).
For our particular example, the value z = % makes the statement 3z — 1 =0
true, then it is true that “There exists an x € R such that 3z — 1 = 0.” In fact,

since r = % is the only answer, then the unique existence statement “There

exists a unique x € R such that 3z — 1 = 0.



1.3.3 Negating Quantified Statements

If we wish to know when a universally quantified statement like Va p(z) is false,
we should understand what it means to negate such statement. Since Vz p(x)
is true when p(z) is true for every single value of x, it will be false when there
is at least one x so that p(z) is not true. In terms of negations, we have

—(Vz p(z)) = Jo —p(x).

Such an zx is called a counterexample to our mathematical statement.
Similarly, we wish to know when an existentially quantified statement like
Jdx p(z) is false. Since Jx p(x) to be true, there must be at least one value of
so that p(x) is true, then to make the entire quantified statemetn false, we need
to show that for all values of z, p(x) is false (in other words, —p(x) is true). In
terms of negations, we have —~(Jap(z)) = Vz p(z).
Below are some examples of negated quantified statements

- Consider the existential statement “There exists an € R such that x? =
—17”. This is known to be a false statement; its negation is the universally
quantified statement “For all 2 € R, 22 # —1,” which is a true statement.

- Consider the universally quantified statement “For all x € R, « is positive
or x is negative.” This statement is actually false because x = 0 is a real
number for which “z is positive or x is negative” is false. The negation
is the existentially quantified statement “There exists an « € R such that
2 is non-positive and x is non-negative,” which is a true statement (with
x = 0 being the value that exists. Notice that we utilized DeMorgan’s
Logic Laws to negative the “or” statement.

1.3.4 Proving and Disproving Quantified Statements

The above negation rules give us a guide as to how to go about both proving
and disproving both universally and existentially quantified statements.

- To prove a universally quantified statement Vz p(z), we simply take an
arbitrary x and directly show that p(z) is true. For example, if we wish
to prove “For all whole numbers n > 3, n? — 1 is composite.” we take an
arbitrary n satisfying n > 3 and show that n? — 1 is not prime. The proof
would go as follows:

Proposition. For all whole numbers n > 3, n? — 1 is composite.

Proof. Let n > 3 be any whole number. Notice that n?—1 = (n+1)(n—1).
Thus, we have written n2 — 1 as a product of two whole numbers n + 1
and n — 1. Since n > 3, then n — 1 > 2 and thus we have written n? — 1
as the product of two whole numbers greater or equal to 2. Thus, n? — 1
is composite.

O

- To disprove a universally quantified statement Va p(z), we must prove the
negation

~(Vap(z)) = 3z —p(z)

to be true. In other words, we must find at least one x such that p(zx)
is false. For example, if we wish to disprove the universally quantified
statement “For all prime numbers n, n is odd, we need to only give one n
that is prime where n is even.



Disprove. For all prime numbers n, n is odd.

Disproof. Notice that n = 2 is a prime number, but 2 is even. Thus, it
is not true that all prime numbers are odd.

O

- To prove an existentially quantified statement 3z p(x), we only need only
provide an z that makes the statement p(z) and, depending on how ob-
vious it is, show that p(x) is true. For example, if we wish to prove that
“There exists a unique x € R such that 3z — 1 = 0,” then our job is two-
fold: find the z that works and show that it is the only one. To do this
latter step, we assume that both  and y make 3z —1 = 0 true. Then, we
use this assumption to conclude that =z = y.

Proposition. There exists a unique real number x such that 3z — 1 = 0.

Proof. Consider the real number x = % Notice that 3 (%) —-1=1-1=0.
Thus, there exists at least one real number x such that 3z — 1 = 0. To
show that there exists a unique such x, we will assume that x and y both
satisfy 3z — 1 = 0 and show that x = y. So,if 3z —1=0and 3y — 1 =0,
then3x—1=0=3y—1. So, 3x—1 =3y —1 and 3z = 3y. Dividing by 3,
we obtain that x = y. Thus, there exists a unique x such that 3x —1 = 0.

- To disprove an existentially quantified statement, 3z p(z), we need to show
that its negation

~(3zp(z)) = Vo —p(z)

to be true. Thus, we must show that for every x, —p(x) is true. For exam-
ple, if we wish to disprove the existentially quantified statement “There
exists a real number x such that 22 < 0,” we will show that for all =, the
negation z? > 0 is true.

Disprove. There exists a real number z such that 22 < 0.

Disproof. To disprove this statement, we will show that for all real
numbers z, 22 > 0. Notice that any real number follows into one of the
following two cases: x > 0 or x < 0. We will prove 22 > 0 for both these
cases. In the first case, if x > 0, then multiplying the inequality x > 0
with itself will not change the sign, and we have that -« > 0 -0, which
is equivalent to z2 > 0. In the second case, if x < 0, then we can multiply
through by —1 and switch the inequality to obtain —z > 0. Multiplying
—x > Oby itself will not change the sign, and we yield (—z) - (—z) > 0-0,
whic his equivalent to z? > 0 and thus 2% > 0.
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