CRYSTALLINE SITE AND CRYSTALLINE COHOMOLOGY

YLIN9

1. ring of Witt vector

Lemma 1.1 (addition and multiplication rule). Let X_0, X_1, \ldots be an infinite sequence of variables, and p a prime number. For each $n \in \mathbb{Z}_{\geq 1}$, let $W_n(X_0, \ldots, X_n)$: $X_0^{p^n} + pX_1^{p^{n-1}} + \cdots + p^n X_n$. Then, there exists polynomials $S_0, S_1, \ldots; P_0, P_1, \cdots \in$ $\mathbb{Z}[X_0, X_1, \ldots; Y_0, Y_1, \ldots]$ such that

$$
W_n(S_0, S_1, \dots, S_n) = W_n(X_0, X_1, \dots, X_n) + W_n(Y_0, Y_1, \dots, Y_n)
$$

$$
W_n(P_0, P_1, \dots, P_n) = W_n(X_0, X_1, \dots, X_n) \cdot W_n(Y_0, Y_1, \dots, Y_n)
$$

Remark 1.2. We can treat $\mathbb{Z}[X_0, X_1, \cdots]$ as a "ring scheme", such that $\Delta(X_i)$ = $S_i, m(X_i) = P_i$. It is an ring object in the category of scheme, that is, the functor takes value in rings.

Definition 1.3 (Witt ring attached to A). Let A be a commutative ring. Then we define $W(A) := \prod_{n\geq 0} A$, such that the mutiplication rule and addition rule is defined as follows: Let $\overline{a} = (a_0, a_1, \ldots), \underline{b} = (b_0, b_1, \ldots) \in W(A)$. Then

$$
\underline{a} + \underline{b} := (S_0(a, b), S_1(a, b), \dots)
$$
 and $\underline{a} \cdot \underline{b} := (P_0(a, b), P_1(a, b), \dots).$

Then $W(A)$ has the 1 := $(1, 0, ...)$ being the multiplicative identity, and p := $1 + 1 + \cdots + 1$ is the element $(0, 1, 0, \ldots)$ in $W(A)$.

We also define the nth truncated Witt vector being $W_n(A) = W(A)/p^nW(A)$.

Remark 1.4. Notice that $W(A) = \text{Hom}(\mathbb{Z}[X_0, \cdots], A)$ and $W_n(A) = \text{Hom}(\mathbb{Z}[X_0, \cdots, X_n], A)$, together with the ring structure introduced by m and Δ .

Now assume that $A = K$ where K is a perfect field of characteristic p. Then:

- (1) $W(K)$ is a complete discrete valuation ring, with residue field K and maximal ideal $pW(K)$. $W(K)$ can be viewed as a thickening of K with ideal $(p).$
- (2) $W(K)$ is endowed with the mappings $V, F: W(K) \to W(K)$,

$$
V(\underline{a}) := (0, a_0, a_1, \dots) \text{ and } F(\underline{a}) := (a_0^p, a_1^p, \dots).
$$

and
$$
V \circ F(\underline{a}) = F \circ V(\underline{a}) = p \cdot \underline{a} = (0, a_0^p, a_1^p, \dots).
$$

Example 1.5. The most important example should be when $K = \mathbb{F}_{p^n}$ and $K = \overline{\mathbb{F}}_p$. When $K = \mathbb{F}_{p^n}$, then $W(K) = \prod \mathbb{F}_{p^n} \cong \mathbb{Z}_{p^n}$, the integral closure of \mathbb{Z}_p in the unique degree n unramified extension of \mathbb{Q}_p . But what is the isomorphism? Notice that we have the Techimuller lift $[] : \mathbb{F}_{p^n}^{\times} \to \mathbb{Z}_{p^n}^{\times}$ such that for $x \in \mathbb{F}_{p^n}$, $[x]$ is the unique element in \mathbb{Z}_{p^n} satisfying $[x]^{p^n-1} - 1 = 0$ and $[x] \equiv x \mod (p)$. Then, the isomorphism $f: W(K) \cong \mathbb{Z}_p^{un}$ is given by $f(\underline{a}) = \sum [a_i] p^i$. Similarly, $W(\overline{\mathbb{F}}_p) \cong \mathbb{Z}_p^{un}$,

Date: March 2023.

the integral closure of \mathbb{Z}_p in the maximal unramified extension of \mathbb{Z}_p . F on $W(K)$ is the Frobenius we know for \mathbb{Z}_{p^n} and \mathbb{Z}_p^{un} .

2. Divided power ring

In this section, we define the divided power structure on a pair (A, I) . The prototype should be $\mathbb{Z} \leq x >$, the ring generated by the symbol $\frac{x^n}{n!}$ $\frac{x^n}{n!}$. We want to define the element $\frac{x^n}{n!}$ $\frac{x^n}{n!}$ in a ring A where "inverting n" only makes sense for $x \in I$ (Not on all A).

Definition 2.1. Given a ring A and an ideal $I \subset A$, an **divided power structure** on (A, I) is a collection of maps $\{\gamma_n\}_{n>0}$ where $\gamma_n : I \to A$ satisfying the following properties for all $x, y \in I, \lambda \in A$:

(1)
$$
\gamma_0(x) = 1, \gamma_1(x) = x, \gamma_n(x) \in I
$$
 for all $n \ge 1$.
\n(2) $\gamma_n(x + y) = \sum_{i+j=n} \gamma_i(x)\gamma_j(y)$.
\n(3) $\gamma_n(\lambda x) = \lambda^n \gamma_n(x)$
\n(4) $\gamma_i(x)\gamma_j(x) = \frac{(i+j)!}{i!j!} \gamma_{i+j}(x)$
\n(5) $\gamma_p(\gamma_q(x)) = \frac{(pq)!}{p!(q!)^p} \gamma_{pq}(x)$.

The motive of Divided power structure is to make sense of the elements $\frac{x^n}{n!}$ $\frac{x^n}{n!}$. Indeed, as a consequence of these axioms, we can deduce two more properties:

- From (3), we may deduce that $\gamma_n(0) = 0$ for all $n > 0$
- From (1), (4) we may deduce that $n! \gamma_n(x) = x^n$.

We say that (A, I, γ) is a **divided power ring** or P.D. ring if $\gamma = {\gamma_n}_{n>0}$ is a divided power structure on A, I.

There are some accessible examples of divided power ring:

Example 2.2. If A is a \mathbb{O} -algebra, then take any ideal I, (A, I) has a unique divided power structure given by

$$
\gamma_n(x) = \frac{x^n}{n!}
$$

So this notion is really interesting when there are some $n \in A$ that is not invertible.

Remark 2.3. When A is torsion free as an additive group (So in particular characteristic 0 ones), then for any $I \subset A$, the divided power structure is unique if it exists. (Basically it will be $\gamma_n(x) = \frac{x^n}{n!}$ $rac{x^n}{n!}$

Example 2.4. Let R be a DVR with residue characteristic p. Let $\pi \in R$ be a uniformizer, and define e by $(p) = (\pi)^e$ (The ramification index). Then, $R, (\pi)$ has a divided power structure (And it is necessarily unique) if and only if $e \leq p-1$.

Indeed, (π) has a divided power structure if and only if $x \in (\pi) \implies \frac{x^n}{n!}$ $\frac{x^n}{n!} \in (\pi),$ which holds exactly when $\mathrm{ord}_{\pi}(\frac{\pi^n}{n!})$ $\frac{\pi^n}{n!}$) > 0 for all $n \ge 1$. But if we write $n = \sum_i a_i p^i$, we have

$$
\text{ord}_{\pi} \frac{\pi^n}{n!} = n - e^{\text{ord}_p(n!)} = n - \frac{e}{p-1}(n - \sum_i a_i) = \frac{p-1-e}{p-1}n + \frac{e}{p-1} \sum_i a_i
$$

which is positive for all $n \geq 1$ if and only if $e \leq p - 1$.

Example 2.5. As a more explicit example, notice that $W(K)$ for K a perfect field of char p has a unique P.D. structure. Indeed, Let $I = (p)$, then $e = 1$ and $p \ge 2$.

Hence, $\gamma_n : (p) \to W(K) : \gamma_n(x) = \frac{x^n}{n!}$ $\frac{x^n}{n!}$ is well defined and is the divided power structure on $W(K)$.

Similarly, for the truncated Witt ring W_n , it has a unique P.D.structure $(W_n,(p),\gamma_m(x))$ where $\gamma_m(x) = \frac{x^m}{m!}$ if $m < n$ and $\gamma_m(x) = 0$ for $m \geq n$.

Example 2.6. Let A be a ring. One can define the following A-algebra with divided power structure:

$$
A\langle x_1,\cdots,x_r\rangle=\oplus_{n\geq 0}\Gamma^n
$$

Where Γ^n is an A module generated by symbols $x_1^{[k_1]} \cdots x_r^{[k_r]}$, where $k_1 + \cdots + k_r = n$. The algebra structure is given by $x_m^{[k_m]} x_n^{[k_n]} = \binom{m+n}{n} x_{m+n}^{[k_m+k_n]}$. The ideal $I =$ $\oplus_{n\geq 1} \Gamma^n$ posses a unqiue P.D. structure $\gamma_n(x_i) = x_i^{[n]}$.

Remark 2.7. If A is canceled by an integer $n > 2$ and if the ideal $I \subset A$ has a *P.D.*structure, the *I* is a nilpotent ideal, since $x^n = n! \gamma_n(x) = 0$ for all $x \in I$. In particular $Spec(A)$ and $Spec(A/I)$ has the same topological space.

Definition 2.8. Let (A, I, γ) and (B, J, δ) be divided power rings. A divided power morphism $f:(A, I, \gamma) \to (B, J, \delta)$ is a ring map $f:A \to B$ such that $f(I) \subseteq J$ and $\delta_n \circ f = f \circ \gamma_n$, for all $n \geq 0$.

We give a criteria which divided powers may be extended from one ring to another.

Proposition 2.9. Let (A, I, δ) be a P.D. ring and B be an A-algebra, and suppose that $\text{Tor}_A(A/I, B) = 0$ (i.e. $I \otimes_A B \cong IB$. Then, the divided powers (A, I, γ) extend uniquely to (B, IB, δ) . In particular, when B is a flat A algebra, then we can apply this propositition.

3. Divided power envolope

Lemma 3.1. Let (A, I, γ) be a divided power ring. Let $A \rightarrow B$ be a ring map. Let $J \subset B$ be an ideal with $IB \subset J$. There exists a divided power ring $(D, \overline{J}, \overline{\gamma})$ and a homomorphism of divided power rings $(A, I, \gamma) \rightarrow (D, \overline{J}, \overline{\gamma})$ such that

$$
\operatorname{Hom}_{(A,I,\gamma)}((D,\overline{J},\overline{\gamma}),(C,K,\delta)) = \operatorname{Hom}_{(A,I)}((B,J),(C,K))
$$

$$
Id_D \iff f_D
$$

functorially in the divided power algebra (C, K, δ) over (A, I, γ) . Here the LHS is morphisms of divided power rings over (A, I, γ) and the RHS is morphisms of (ring, *ideal*) pairs over (A, I)

Definition 3.2 (divided power envolope). Let (A, I, γ) be a divided power ring. Let $A \rightarrow B$ be a ring map. Let $J \subset B$ be an ideal with $IB \subset J$. The divided power algebra $(D, \overline{J}, \overline{\gamma})$ as above is called the **divided power envelope** of J in B relative to (A, I, γ) and is denoted $D_B(J)$ or $D_{B,\gamma}(J)$.

Let $(A, I, \gamma) \to (C, K, \delta)$ be a homomorphism of divided power rings. The universal property of $D_{B,\gamma}(J) = (D,\overline{J},\overline{\gamma})$ is

ring maps $B \to C$ which map $J \to K \iff$ divided power homomorphisms $(D, \overline{J}, \overline{\gamma}) \to (C, K, \delta)$

$$
g \circ f_D: B \to D \to C \iff g: D \to C
$$

So, how to construct this P.D.envolope $(D, \overline{J}, \overline{\gamma})$? By the universal property, the surjection $B \to B/J$ factors through D

$$
B \to D \to B/J
$$

The first arrow maps J into \overline{J} and \overline{J} is the kernel of the second arrow. The ideal \overline{J} is generated by $\overline{\gamma}_n(x)$, where $n > 0$ and x is an element in the image of $IB \to D$. These $\overline{\gamma}_n(x)$ also generate D as a B-algebra.

Example 3.3. (1) (A, I, γ) is its own *P.D.* envolpe of the identity $A \to A$.

- (2) Given (A, I, γ) and consider $\varphi : A \to A/I$, $B = A/I$ and $J = (0)$. Then $D_{B,\gamma}(0) = (A, I, \gamma)$. This can be seen by either showing that (A, I, γ) satisfies the required universal property.
- (3) In the case where $\varphi : B \to B$ sending I to J, we have the following lemma for $D_{A,\gamma}(J)$:

Lemma 3.4. Let (B, I, γ) be a divided power algebra. Let $I \subset J \subset B$ be an ideal. Let $(D, \overline{J}, \overline{\gamma})$ be the divided power envelope of J relative to γ . Choose elements $f_t \in J, t \in T$ such that $J = I + (f_t)$. Then there exists a surjection

$$
\Psi: B\langle x_t \rangle \to D
$$

of divided power rings mapping x_t to the image of f_t in D. The kernel of Ψ is generated by the elements $x_t - f_t$ and all $\gamma_n(\sum r_t x_t - r_0)$, wherever we have a relation $\sum r_t f_t - r_0 = 0$ in B for some $r_t \in B, r_0 \in I$.

(4) Consider A and $I = (0), \gamma$ be the trivial divided power structure. Let $B = A[t]$ with $J = (t)$. Then $D_{B,\gamma}(J) = A(t)$, with $\gamma_n(t) = t^{[n]}$. More generally, for (A, I, γ) and $B = A[t_1, \dots, t_n]$ and $J = IB + (t_1, \dots, t_n)$, we have $D_{B,\gamma}(J) = A\langle t_1,\cdots,t_n\rangle$, $\overline{J} = J = IA\langle x_1,\ldots,x_t\rangle + A\langle x_1,\ldots,x_t\rangle_+$, and the divided power structure δ is that $\delta_n(x_i) = x_i^{[n]}$.

It has the following universal property: $(A, I, \gamma) \rightarrow (A\langle x_1, \cdots, x_t \rangle, J, \delta)$ is a homomorphism of divided power rings. Moreover, A homomorphism of divided power rings $\varphi : (A\langle x_1, \cdots, x_t \rangle, J, \delta) \to (C, K, \epsilon)$ is the same thing as a homomorphism of divided power rings $A \rightarrow C$ and elements $k_1, \cdots, k_t \in K$

(5) We have a relative version of Divided power polynomial algebra: Let (A, I, γ) be a divided power ring. Let B be an A-algebra and $IB \subset J \subset B$ an ideal. Let x_i be a set of variables. Then

$$
D_{B[x_i],\gamma}(JB[x_i] + (xi)) = D_{B,\gamma}(J)\langle x_i \rangle
$$

The construction of divided power envelope is functorial in both variable B and in the base ring A:

Lemma 3.5. Let (A, I, γ) be a divided power ring, B an A-algebra, $J \subset B$, then:

- If B' is a flat B algebra $\implies D_{B',\gamma}(JB') = D_{B,\gamma}(J) \otimes_B B'$.
- Let $(A, I, \gamma) \to (A', I', \gamma')$ be a P.D. morphism. Then $D_{B,\gamma}(J) \otimes_A A' =$ $D_{B\otimes_A A',\gamma'}(J\otimes_A A')$

The notion of divided powers may be globalized as follows. We replace A by a scheme S and I by a quasi-coherent ideal $\mathcal I$ of $\mathcal O_S$.

Definition 3.6. An divided power structure on $(\mathcal{O}_S, \mathcal{I})$ is $\{\gamma_n\}_{n\geq 1}, \gamma_n : \mathcal{I} \to \mathcal{O}_S$, such that for each open set U of S, $\gamma_n : \mathcal{I}(U) \to \mathcal{O}_S(U)$ is a divided power structure defined as before, and the restriction maps are divided power morphisms.

A P.D. morphism $f:(S, I, \gamma) \to (S', \mathcal{I}', \gamma')$ is a morphism $f: S \to S'$ such that $f^{-1}\mathcal{I}'\mathcal{O}_S \subseteq \mathcal{I}$, and for all $U' \subseteq S'$ open, the map $f: (\mathcal{O}_{S'}(U'), \mathcal{I}'(U'), \gamma') \to$ $(\mathcal{O}_S(f^{-1}(U')), \mathcal{I}'(f^{-1}(U')), \gamma)$ is a P.D. morphism.

Since localizations are flat, we have that for any ring A and any ideal $I \subset A$, P.D. structures on A and I correspond to P.D. structures on Spec A and I . Moreover, P.D. morphisms $(A, I, \gamma) \to (B, J, \delta)$ correspond to P.D. morphisms (Spec B, J, δ) \to $(Spec A, I, \gamma).$

Since quasi-coherent ideals $\mathcal I$ of S correspond to closed immersions $U \to S$, in the following, we will write a P.D. scheme (S, \mathcal{I}, γ) as $(U \hookrightarrow S, \gamma)$, where $U \hookrightarrow S$ is the closed immersion corresponding to $\mathcal I$. In what follows, we will primarily be interested in divided power thickenings, which are divided powers schemes ($U \leftrightarrow$ S, γ for which I is nilpotent ideal (Equivalent to $U \hookrightarrow S$ being a homeomorphism). As an application of P.D. envelope in scheme, we have the following construction:

Proposition 3.7 (P.D. thickening). Let K be a perfect field of characteristic p and X/K a K scheme. Let $i : X \hookrightarrow Z$ be a closed immersion of X into a smooth W_n scheme Z. Then there exists a unique scheme $\varphi : \tilde{Z} \to Z$, called the P.D. envolope of i, such that $i = \varphi \circ i'$. Moreover, for any other P.D scheme T, δ such that $T \to X$ is a morphism and T is over Z, then this morphism factor through $T \to \tilde{Z} \to X$.

Proof. We look at the ring theoretic picture. Since W_n has a P.D. structure and Z is a smooth W_n scheme, then Z has a unique extended P.D. structure. $X \rightarrow$ Z corresponds to $A \to B = A/I$. Then $Z = D_{B,\gamma}(0)$ is a P.D. envolope of $(A, I, \gamma), A \to A/I.$

Example 3.8. (1) If $Z \otimes_{W_n} k \cong X$, then $\tilde{Z} = Z$, as is the affine case.

(2) If $X = \text{Spec} k$, $Z = \text{Spec} W_n[t]$, then $\tilde{Z} = \text{Spec} W_n\langle t \rangle$. Indeed, if we look at the affine picture, let $B = W_n, J = (p)$, then \tilde{Z} corresponds to $D_{W_n(t), \gamma}(\mathcal{I}),$ where *I* is the ideal of *Z* cutting out *X*, so it is $(p) + (t)$. By the (5) of the example, it is equal to $D_{B,\gamma}((p))\langle t\rangle = W_n\langle t\rangle$.

4. Crystalline site and crystals

Remark 4.1. A site is a category $\mathcal C$ along with coverings for each element in $\mathcal C$: For each $X \in \mathcal{C}$, $cov(X) = \{X_i \to X\}_{i \in I}$ such that $cov(X)$ contains all isomorphisms, and is closed under base change and composite. The Crystalline site is a site under the covering specified by the Crystalline topology.

Let K be a perfect field of characteristic $p > 0$. Let $W = W(k)$ be the ring of Witt vector of K, $W_n = W/p^n$ (So $W_1 = K.W_n$ should be considered as nilpotent thickenings of K) Then $(W_n,(p))$ has a unique divided power structure. Let X be a K-scheme

Definition 4.2 (The Crystalline site). The Crystalline site of X over W_n , denoted as $Crys(X/W_n)$, is the category together with coverings, where:

6 YLIN9

• The objects are commutative diagram:
$$
\downarrow \qquad \qquad \downarrow
$$
, where $U \subset X$, $Spec(k) \longrightarrow W_n$,

 $U \longrightarrow T$

is a zariski open, and $U \hookrightarrow T$ are divided power thickening of U. That is, $U \hookrightarrow T$ is a closed immersion of W_n scheme, defined by an ideal \mathcal{I} , such that $\mathcal{I} \supset (p) \mathcal{O}_T, (\mathcal{O}_T, \mathcal{I})$ has a divided power structure δ satisfying $\delta(pa) = \gamma_n(p)a^n, pa \in \mathcal{I}$. We denote such object as (U, T, δ) .

- The morphisms $f : (U, T, \delta) \to (U', T', \delta')$ is $f : T \to T'$ which is a P.D. morphism and $f|_U$ is an open immersion.
- For (U, T, δ) , the family of covers are $\{(U_i, T_i, \delta_i)\}_{i \in I}$ such that $T_i \hookrightarrow T$ is an open immersion and $T = \bigcup_i T_i$.

Definition 4.3 (The Sheaf on Crys (X/W_n)). A sheaf F on Crys (X/W_n) is equivalent to the following data: For every element $(U \hookrightarrow T, \gamma)$ of Crys (X/W_n) , a Zariski sheaf $\mathcal{F}_{(U \hookrightarrow T,\gamma)}$ on T, and for every morphism $u : (U \hookrightarrow T, \gamma) \to (U' \hookrightarrow T', \gamma')$ in $Crys(X/W_n)$, a map

$$
\rho_u: u^{-1} \mathcal{F}_{(U' \hookrightarrow T', \gamma')} \to \mathcal{F}_{(U \hookrightarrow T, \gamma)}
$$

of sheaves on T satisfying the following properties:

(1) If
$$
v : (U' \hookrightarrow T', \gamma') \to (U'' \hookrightarrow T'', \gamma'')
$$
 is another morphism in $Crys(X/W_n)$

.

$$
u^{-1}v^{-1}\mathcal{F}_{(U'' \hookrightarrow T'',\gamma'')} \xrightarrow{u^{-1}\rho_u} u^{-1}\mathcal{F}_{(U' \hookrightarrow T',\gamma')}
$$

$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$

$$
(v \circ u)^{-1}\mathcal{F}_{(U'' \hookrightarrow T'',\gamma'')} \xrightarrow{\rho_{v \circ u}} \mathcal{F}_{(U \hookrightarrow T,\gamma)}
$$

That is, $\rho_u \circ u^{-1} \rho_v = \rho_{v \circ u}$.

(2) If $u: T \to T'$ is an open immersion, then ρ_u is an isomorphism of sheaves on T.

Example 4.4. A particularly important example of Sheaf on $Crys(X/W_n)$ is given by the structure sheaf $\mathcal{O}_{\mathrm{Crys}(X/W_n)}$. It is a sheaf valued in rings given by $(U \hookrightarrow$ T, γ \rightarrow \mathcal{O}_T . We define a sheaf of modules on Crys (X/W_n) to be a sheaf of $\mathcal{O}_{\mathrm{Crys}(X/W_n)}$ -modules. For a sheaf of modules F, note that the maps ρ_u define maps $\rho_u : u^* \mathcal{F}_{(U' \hookrightarrow T', \gamma')} \to \mathcal{F}_{(U \hookrightarrow T, \gamma)}$ of \mathcal{O}_T -modules.

Definition 4.5. A sheaf F of modules on $Crys(X/W_n)$ is a crystal if each ρ_u is an isomorphism. Note that $\mathcal{O}_{\mathrm{Crys}(X/W_n)}$ is itself a crystal, since \mathcal{O}_T is a quasi-coherent sheaf, and so we do have $\rho_u : u^* \mathcal{O}_{T'} \cong \mathcal{O}_T$.

We say that F is a crystal of quasi-coherent modules if each $\mathcal{F}_{(U \hookrightarrow T,\gamma)}$ is a quasicoherent module on T.

Example 4.6. Let us consider crystals of quasi-coherent modules on $Crys(Spec\mathbb{F}_p)$. Since $\text{Spec}\mathbb{F}_p$ is affine and has only one nonempty open subset, we may identify objects in Spec \mathbb{F}_p with P.D. rings (A, I, γ) where I is a nil ideal and $A/I = \mathbb{F}_p$. Since A is a $W(\mathbb{F}_p) = \mathbb{Z}_p$ -algebra. We may therefore define a crystal of quasi-coherent modules on $\text{Crys}(\text{Spec} \mathbb{F}_p/W)$ by fixing a \mathbb{Z}_p -module M and setting $\mathcal{F}_{(A,I,\gamma)}$; = $A \otimes_{\mathbb{Z}_p}$ M.

Now that we have the notion of Crystalline site, we can define the Crystalline cohomology as the cohomology of $\mathcal{O}_{\mathrm{Crys}(X/W_n)}$.

Definition 4.7. With the assumption as above, we define

$$
H^i(X/W_n) = H^i((X/W_n)_{Crys}; \mathcal{O}_{X/W_n}), H^i(X/W) = \varprojlim_n H^i(X/W_n)
$$

This definition is not computable. Below we show a comparison theorem that makes the crystalline cohomology computable.

5. comparison result of Crystalline and De Rham

Let $j : X \hookrightarrow Z$ a closed immersion of X in a smooth scheme Z over W_n . If we look at the structural sheaf, we get $\mathcal{O}_Z \to \mathcal{O}_X$. Then, since \mathcal{O}_Z is a W_n module, we have a P.D.W_n algebra $\mathcal{O}_{\tilde{Z}}$ with a W_n linear map $\iota : \mathcal{O}_Z \to \mathcal{O}_{\tilde{Z}}$, such that $\mathcal{O}_Z \to \mathcal{O}_X$ factors through $\mathcal{O}_Z \to \mathcal{O}_{\tilde{Z}} \to \mathcal{O}_X$, and $X \to \tilde{Z}$ is a divided power morphism over W_n . We call this \tilde{Z} the divided power thickening of X in Z. As name suggested, $X \to \tilde{Z}$ is a nil-immersion, so they have the same topological space.

Let $\tilde{\mathcal{I}}$ be the ideal in $\tilde{\mathcal{I}}$ defining \mathcal{O}_X . Then $\mathcal{O}_X = \mathcal{O}_{\tilde{\mathcal{I}}}/\tilde{\mathcal{I}}$. There exists a unique integrable connection

$$
d:\mathcal O_{\tilde{Z}}\to \mathcal O_{\tilde{Z}}\otimes_{\mathcal O_Z}\Omega^1_{Z/W_n}
$$

such that $d\gamma_n(x) = \gamma_{n-1}(x) \otimes dx$, for all $x \in \tilde{\mathcal{I}}$. Thus, $\mathcal{O}_{\tilde{Z}} \otimes_{\mathcal{O}_Z} \Omega_{Z/W_n}^{\bullet}$ is a complex of abelian sheaf on \tilde{Z} that has the same underlying space as X.

Theorem 5.1. There is a canonical isomorphism between crystalline cohomology and the Hypercohomology $H^i(X/W_n) \cong \mathbb{H}^i(X,\mathcal{O}_{\tilde{Z}} \otimes_{\mathcal{O}_Z} \Omega^{\bullet}_{Z/W_n})$

Corollary 5.1.1. If Z/W_n is a smooth lifting of X/k , Then $\tilde{Z} = Z$, and

$$
H^i(X/W_n) \cong H^i_{dR}(Z/W_n)
$$

5.1. Properties of Crystalline cohomology. A lot of the properties of Crystalline cohomology is true without assuming that X has a smooth lifting over W_n . But to see these properties, it is easier to assume that X/k is proper smooth and admits a lifing Z over W_n that's also smooth.

- (1) $H^*(X/W_1) = H^*_{dR}(X/k)$
- (2) $H^n_{\text{Crys}}(X/W_m)$ is a contravariant functor in X. These groups are finitely generated W_m modules, and zero if $n < 0$ orn > $2dim(X)$
- (3) There is a cup-product structure

$$
\cup_{i,j}: H^i_{\rm Crys}(X/W)/torsion \times H^j_{\rm Crys}(X/W)/torsion \rightarrow H^{i+j}_{\rm Crys}(X/W)
$$

Moreover, $H^{2 \dim(X)}_{\text{Crys}}(X/W) \cong W$, and $\cup_{n,2dim(X)-n}$ induces a perfect pairing modulo torsion, called Poincare duality.

- (4) $H^n_{\text{Crys}}(X/W)$ defines an integral structure on $H^n_{dR}(X/K)$.
- (5) If l is a prime different from p ,

$$
\dim_{\mathbb{Q}_l} H^n(X, \mathbb{Q}_l) = rank/WH^n_{\text{Crys}}(X/W)
$$

(6) We have the universal coefficient lemma

$$
0 \to H^n_{{\rm Crys}}(X/W) \otimes_W k \to H^n_{dR}(X/k) \to Tor^W_1(H^{n+1}_{{\rm Crys}}(X/W),k) \to 0
$$

8 YLIN9

This can be derived from UFC of De Rham cohomology if X has a lift, but is true even if X does not have a lift.

(7) the absolute Frobenius morphism $F: X \to X$ induces a σ -linear morphism $\varphi: H^n_{\text{Crys}}(X/W) \to H^n_{\text{Crys}}(X/W)$ of W-modules.

Example 5.2. Let X be a smooth and proper variety over a perfect field k of positive characteristic p, and assume that the Using only the properties of crystalline cohomology mentioned above, then the following are equivalent

- For all $n \geq 0$, the W-module $H^n_{\text{Crys}}(X/W)$ is torsion-free.
- We have $\dim_{\mathbb{Q}_l} H^n(X, \mathbb{Q}_l) = \dim_k H_{dR}^n(X/k)$ for all $n \geq 0$ and all primes $l \neq p$.

Example 5.3. Let us give a two fundamental examples.

- (1) Let A be an Abelian variety of dimension g. Then, all $H^n_{\text{Crys}}(A/W)$ are torsion-free W-modules. More precisely, $H_{\text{Crys}}^1(A/W)$ is free of rank $2g$ and for all $n \geq 2$ there are isomorphisms $H^{n}_{\text{Crys}}(A/W) \cong \wedge^n H^1_{\text{Crys}}(A/W)$. Also, $\mathbb{D}(A[p^{\infty}]) \cong H^1_{\text{Crys}}(A/W)$, compatible with the Frobenius-actions on both sides.
- (2) For a smooth and proper variety X, let $\alpha: X \to Alb(X)$ be its Albanese morphism. Then, α induces an isomorphism $H^1_{\text{Crys}}(X/W) \cong H^1_{\text{Crys}}(Alb(X)/W)$ In particular, $H^1_{\text{Crys}}(X/W)$ is always torsion-free.