
CRYSTALLINE SITE AND CRYSTALLINE COHOMOLOGY

YLIN9

1. ring of Witt vector

Lemma 1.1 (addition and multiplication rule). Let X0, X1, . . . be an infinite se-
quence of variables, and p a prime number. For each n ∈ Z≥1, let Wn(X0, . . . , Xn) :=

Xpn

0 +pXpn−1

1 + · · ·+pnXn. Then, there exists polynomials S0, S1, . . . ;P0, P1, · · · ∈
Z[X0, X1, . . . ;Y0, Y1, . . . ] such that

Wn(S0, S1, . . . , Sn) = Wn(X0, X1, . . . , Xn) +Wn(Y0, Y1, . . . , Yn)

Wn(P0, P1, . . . , Pn) = Wn(X0, X1, . . . , Xn) ·Wn(Y0, Y1, . . . , Yn)

Remark 1.2. We can treat Z[X0, X1, · · · , ] as a "ring scheme", such that ∆(Xi) =
Si,m(Xi) = Pi. It is an ring object in the category of scheme, that is, the functor
takes value in rings.

Definition 1.3 (Witt ring attached to A). Let A be a commutative ring. Then
we define W (A) :=

∏
n≥0 A, such that the mutiplication rule and addition rule is

defined as follows: Let a = (a0, a1, . . . ), b = (b0, b1, . . . ) ∈W (A). Then

a+ b := (S0(a, b), S1(a, b), . . . ) and a · b := (P0(a, b), P1(a, b), . . . ).

Then W (A) has the 1 := (1, 0, . . . ) being the multiplicative identity, and p :=
1 + 1 + · · ·+ 1 is the element (0, 1, 0, . . . ) in W (A).

We also define the nth truncated Witt vector being Wn(A) = W (A)/pnW (A).

Remark 1.4. Notice that W (A) = Hom(Z[X0, · · · ], A) and Wn(A) = Hom(Z[X0, · · · , Xn], A),
together with the ring structure introduced by m and ∆.

Now assume that A = K where K is a perfect field of characteristic p. Then:
(1) W (K) is a complete discrete valuation ring, with residue field K and max-

imal ideal pW (K). W (K) can be viewed as a thickening of K with ideal
(p).

(2) W (K) is endowed with the mappings V, F : W (K)→W (K),

V (a) := (0, a0, a1, . . . ) and F (a) := (ap0, a
p
1, . . . ).

and V ◦ F (a) = F ◦ V (a) = p · a = (0, ap0, a
p
1, . . . ).

Example 1.5. The most important example should be when K = Fpn and K = Fp.
When K = Fpn , then W (K) =

∏
Fpn ∼= Zpn , the integral closure of Zp in the

unique degree n unramified extension of Qp. But what is the isomorphism? Notice
that we have the Techimuller lift [] : F×

pn → Z×
pn such that for x ∈ Fpn , [x] is the

unique element in Zpn satisfying [x]p
n−1 − 1 = 0 and [x] ≡ x mod (p). Then, the

isomorphism f : W (K) ∼= Zun
p is given by f(a) =

∑
[ai]p

i. Similarly, W (Fp) ∼= Zun
p ,
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the integral closure of Zp in the maximal unramified extension of Zp. F on W (K)
is the Frobenius we know for Zpn and Zun

p .

2. Divided power ring

In this section, we define the divided power structure on a pair (A, I). The
prototype should be Z < x >, the ring generated by the symbol xn

n! . We want to
define the element xn

n! in a ring A where "inverting n" only makes sense for x ∈ I
(Not on all A).

Definition 2.1. Given a ring A and an ideal I ⊂ A, an divided power structure
on (A, I) is a collection of maps {γn}n≥0 where γn : I → A satisfying the following
properties for all x, y ∈ I, λ ∈ A:

(1) γ0(x) = 1, γ1(x) = x, γn(x) ∈ I for all n ≥ 1.
(2) γn(x+ y) =

∑
i+j=n γi(x)γj(y).

(3) γn(λx) = λnγn(x)

(4) γi(x)γj(x) =
(i+j)!
i!j! γi+j(x)

(5) γp(γq(x)) =
(pq)!
p!(q!)p γpq(x).

The motive of Divided power structure is to make sense of the elements xn

n! . Indeed,
as a consequence of these axioms, we can deduce two more properties:

• From (3), we may deduce that γn(0) = 0 for all n > 0
• From (1), (4) we may deduce that n!γn(x) = xn.

We say that (A, I, γ) is a divided power ring or P.D. ring if γ = {γn}n≥0 is a
divided power structure on A, I.

There are some accessible examples of divided power ring:

Example 2.2. If A is a Q-algebra, then take any ideal I, (A, I) has a unique
divided power structure given by

γn(x) =
xn

n!

So this notion is really interesting when there are some n ∈ A that is not invertible.

Remark 2.3. When A is torsion free as an additive group (So in particular char-
acteristic 0 ones), then for any I ⊂ A, the divided power structure is unique if it
exists. (Basically it will be γn(x) =

xn

n! )

Example 2.4. Let R be a DVR with residue characteristic p. Let π ∈ R be a
uniformizer, and define e by (p) = (π)e (The ramification index). Then, R, (π) has
a divided power structure (And it is necessarily unique) if and only if e ≤ p− 1.

Indeed, (π) has a divided power structure if and only if x ∈ (π) =⇒ xn

n! ∈ (π),
which holds exactly when ordπ(

πn

n! ) > 0 for all n ≥ 1. But if we write n =
∑

i aip
i,

we have

ordπ
πn

n!
= n− eordp(n!) = n− e

p− 1
(n−

∑
i

ai) =
p− 1− e

p− 1
n+

e

p− 1

∑
i

ai

which is positive for all n ≥ 1 if and only if e ≤ p− 1.

Example 2.5. As a more explicit example, notice that W (K) for K a perfect field
of char p has a unique P.D. structure. Indeed, Let I = (p), then e = 1 and p ≥ 2.
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Hence, γn : (p) → W (K) : γn(x) = xn

n! is well defined and is the divided power
structure on W (K).

Similarly, for the truncated Witt ring Wn, it has a unique P.D.structure (Wn, (p), γm(x)

where γm(x) = xm

m! if m < n and γm(x) = 0 for m ≥ n.

Example 2.6. Let A be a ring. One can define the following A-algebra with
divided power structure:

A⟨x1, · · · , xr⟩ = ⊕n≥0Γ
n

Where Γn is an A module generated by symbols x[k1]
1 · · ·x[kr]

r , where k1+· · ·+kr = n.
The algebra structure is given by x

[km]
m x

[kn]
n =

(
m+n
n

)
x
[km+kn]
m+n . The ideal I =

⊕n≥1Γ
n posses a unqiue P.D. structure γn(xi) = x

[n]
i .

Remark 2.7. If A is canceled by an integer n > 2 and if the ideal I ⊂ A has a
P.D.structure, the I is a nilpotent ideal, since xn = n!γn(x) = 0 for all x ∈ I. In
particular Spec(A) and Spec(A/I) has the same topological space.

Definition 2.8. Let (A, I, γ) and (B, J, δ) be divided power rings. A divided power
morphism f : (A, I, γ)→ (B, J, δ) is a ring map f : A→ B such that f(I) ⊆ J and
δn ◦ f = f ◦ γn, for all n ≥ 0.

We give a criteria which divided powers may be extended from one ring to
another.

Proposition 2.9. Let (A, I, δ) be a P.D. ring and B be an A-algebra, and suppose
that TorA(A/I,B) = 0(i.e. I⊗AB ∼= IB. Then, the divided powers (A, I, γ) extend
uniquely to (B, IB, δ). In particular, when B is a flat A algebra, then we can apply
this propositition.

3. Divided power envolope

Lemma 3.1. Let (A, I, γ) be a divided power ring. Let A→ B be a ring map. Let
J ⊂ B be an ideal with IB ⊂ J . There exists a divided power ring (D, J, γ) and a
homomorphism of divided power rings (A, I, γ)→ (D, J, γ) such that

Hom(A,I,γ)((D, J, γ), (C,K, δ)) = Hom(A,I)((B, J), (C,K))

IdD ⇐⇒ fD

functorially in the divided power algebra (C,K, δ) over (A, I, γ). Here the LHS is
morphisms of divided power rings over (A, I, γ) and the RHS is morphisms of (ring,
ideal) pairs over (A, I)

Definition 3.2 (divided power envolope). Let (A, I, γ) be a divided power ring.
Let A→ B be a ring map. Let J ⊂ B be an ideal with IB ⊂ J . The divided power
algebra (D, J, γ) as above is called the divided power envelope of J in B relative
to (A, I, γ) and is denoted DB(J) or DB,γ(J).

Let (A, I, γ) → (C,K, δ) be a homomorphism of divided power rings. The uni-
versal property of DB,γ(J) = (D, J, γ) is

ring maps B → C which map J → K ⇐⇒ divided power homomorphisms (D, J, γ)→ (C,K, δ)

g ◦ fD : B → D → C ⇐⇒ g : D → C
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So, how to construct this P.D.envolope (D, J, γ)? By the universal property, the
surjection B → B/J factors through D

B → D → B/J

The first arrow maps J into J and J is the kernel of the second arrow. The ideal J
is generated by γn(x), where n > 0 and x is an element in the image of IB → D.
These γn(x) also generate D as a B-algebra.

Example 3.3. (1) (A, I, γ) is its own P.D. envolpe of the identity A→ A.
(2) Given (A, I, γ) and consider φ : A → A/I, B = A/I and J = (0). Then

DB,γ((0)) = (A, I, γ). This can be seen by either showing that (A, I, γ)
satisfies the required universal property.

(3) In the case where φ : B → B sending I to J , we have the following lemma
for DA,γ(J):

Lemma 3.4. Let (B, I, γ) be a divided power algebra. Let I ⊂ J ⊂ B be an
ideal. Let (D, J, γ) be the divided power envelope of J relative to γ. Choose
elements ft ∈ J, t ∈ T such that J = I+(ft). Then there exists a surjection

Ψ : B⟨xt⟩ → D

of divided power rings mapping xt to the image of ft in D. The kernel of Ψ
is generated by the elements xt − ft and all γn(

∑
rtxt − r0), wherever we

have a relation
∑

rtft − r0 = 0 in B for some rt ∈ B, r0 ∈ I.

(4) Consider A and I = (0), γ be the trivial divided power structure. Let
B = A[t] with J = (t). Then DB,γ(J) = A⟨t⟩, with γn(t) = t[n]. More
generally, for (A, I, γ) and B = A[t1, · · · , tn] and J = IB+ (t1, · · · , tn), we
have DB,γ(J) = A⟨t1, · · · , tn⟩, J = J = IA⟨x1, . . . , xt⟩ + A⟨x1, . . . , xt⟩+ ,
and the divided power structure δ is that δn(xi) = x

[n]
i .

It has the following universal property: (A, I, γ) → (A⟨x1, · · · , xt⟩, J, δ)
is a homomorphism of divided power rings. Moreover, A homomorphism
of divided power rings φ : (A⟨x1, · · · , xt⟩, J, δ) → (C,K, ϵ) is the same
thing as a homomorphism of divided power rings A → C and elements
k1, · · · , kt ∈ K

(5) We have a relative version of Divided power polynomial algebra: Let (A, I, γ)
be a divided power ring. Let B be an A-algebra and IB ⊂ J ⊂ B an ideal.
Let xi be a set of variables. Then

DB[xi],γ(JB[xi] + (xi)) = DB,γ(J)⟨xi⟩

The construction of divided power envelope is functorial in both variable B and
in the base ring A:

Lemma 3.5. Let (A, I, γ) be a divided power ring, B an A-algebra, J ⊂ B, then:

• If B′ is a flat B algebra =⇒ DB′,γ(JB
′) = DB,γ(J)⊗B B′.

• Let (A, I, γ) → (A′, I ′, γ′) be a P.D. morphism. Then DB,γ(J) ⊗A A′ =
DB⊗AA′,γ′(J ⊗A A′)

The notion of divided powers may be globalized as follows. We replace A by a
scheme S and I by a quasi-coherent ideal I of OS .
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Definition 3.6. An divided power structure on (OS , I) is {γn}n≥1, γn : I → OS,
such that for each open set U of S, γn : I(U)→ OS(U) is a divided power structure
defined as before, and the restriction maps are divided power morphisms.

A P.D. morphism f : (S, I, γ) → (S′, I ′, γ′) is a morphism f : S → S′ such
that f−1I ′OS ⊆ I , and for all U ′ ⊆ S′ open, the map f : (OS′(U ′), I ′(U ′), γ′) →
(OS(f

−1(U ′)), I ′(f−1(U ′)), γ) is a P.D. morphism.

Since localizations are flat, we have that for any ring A and any ideal I ⊂ A, P.D.
structures on A and I correspond to P.D. structures on SpecA and Ĩ. Moreover,
P.D. morphisms (A, I, γ)→ (B, J, δ) correspond to P.D. morphisms (SpecB, J̃, δ)→
(SpecA, Ĩ, γ).

Since quasi-coherent ideals I of S correspond to closed immersions U → S, in
the following, we will write a P.D. scheme (S, I, γ) as (U ↪→ S, γ), where U ↪→ S
is the closed immersion corresponding to I . In what follows, we will primarily be
interested in divided power thickenings, which are divided powers schemes (U ↪→
S, γ) for which I is nilpotent ideal (Equivalent to U ↪→ S being a homeomorphism).

As an application of P.D. envelope in scheme, we have the following construction:

Proposition 3.7 (P.D. thickening). Let K be a perfect field of characteristic p and
X/K a K scheme. Let i : X ↪→ Z be a closed immersion of X into a smooth Wn

scheme Z. Then there exists a unique scheme φ : Z̃ → Z, called the P.D. envolope
of i, such that i = φ◦i′. Moreover, for any other P.D scheme T, δ such that T → X
is a morphism and T is over Z, then this morphism factor through T → Z̃ → X.

Proof. We look at the ring theoretic picture. Since Wn has a P.D. structure and
Z is a smooth Wn scheme, then Z has a unique extended P.D. structure. X →
Z corresponds to A → B = A/I. Then Z̃ = DB,γ((0)) is a P.D. envolope of
(A, I, γ), A→ A/I. □

Example 3.8. (1) If Z ⊗Wn k ∼= X, then Z̃ = Z, as is the affine case.
(2) If X = Speck, Z = SpecWn[t], then Z̃ = SpecWn⟨t⟩. Indeed, if we look at

the affine picture, let B = Wn, J = (p), then Z̃ corresponds to DWn(t),γ(I),
where I is the ideal of Z cutting out X, so it is (p) + (t). By the (5) of the
example, it is equal to DB,γ((p))⟨t⟩ = Wn⟨t⟩.

4. Crystalline site and crystals

Remark 4.1. A site is a category C along with coverings for each element in C: For
each X ∈ C, cov(X) = {Xi → X}i∈I such that cov(X) contains all isomorphisms,
and is closed under base change and composite. The Crystalline site is a site under
the covering specified by the Crystalline topology.

Let K be a perfect field of characteristic p > 0. Let W = W (k) be the ring of
Witt vector of K, Wn = W/pn (So W1 = K.Wn should be considered as nilpotent
thickenings of K) Then (Wn, (p)) has a unique divided power structure. Let X be
a K-scheme

Definition 4.2 (The Crystalline site). The Crystalline site of X over Wn, denoted
as Crys(X/Wn), is the category together with coverings, where:
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• The objects are commutative diagram:

U T

Spec(k) Wn

, where U ⊂ X

is a zariski open, and U ↪→ T are divided power thickening of U . That
is, U ↪→ T is a closed immersion of Wn scheme, defined by an ideal I,
such that I ⊃ (p)OT , (OT , I) has a divided power structure δ satisfying
δ(pa) = γn(p)a

n, pa ∈ I. We denote such object as (U, T, δ).
• The morphisms f : (U, T, δ) → (U ′, T ′, δ′) is f : T → T ′ which is a P.D.

morphism and f |U is an open immersion.
• For (U, T, δ), the family of covers are {(Ui, Ti, δi)}i∈I such that Ti ↪→ T is

an open immersion and T = ∪iTi.

Definition 4.3 (The Sheaf on Crys(X/Wn)). A sheaf F on Crys(X/Wn) is equiva-
lent to the following data: For every element (U ↪→ T, γ) of Crys(X/Wn), a Zariski
sheaf F(U↪→T,γ) on T , and for every morphism u : (U ↪→ T, γ) → (U ′ ↪→ T ′, γ′) in
Crys(X/Wn), a map

ρu : u−1F(U ′↪→T ′,γ′) → F(U↪→T,γ)

of sheaves on T satisfying the following properties:
(1) If v : (U ′ ↪→ T ′, γ′)→ (U ′′ ↪→ T ′′, γ′′) is another morphism in Crys(X/Wn)

u−1v−1F(U ′′↪→T ′′,γ′′) u−1F(U ′↪→T ′,γ′)

(v ◦ u)−1F(U ′′↪→T ′′,γ′′) F(U↪→T,γ)

u−1ρu

ρu

ρv◦u
.

That is, ρu ◦ u−1ρv = ρv◦u.
(2) If u : T → T ′ is an open immersion, then ρu is an isomorphism of sheaves

on T .

Example 4.4. A particularly important example of Sheaf on Crys(X/Wn) is given
by the structure sheaf OCrys(X/Wn). It is a sheaf valued in rings given by (U ↪→
T, γ) → OT . We define a sheaf of modules on Crys(X/Wn) to be a sheaf of
OCrys(X/Wn) -modules. For a sheaf of modules F , note that the maps ρu define
maps ρu : u∗F(U ′↪→T ′,γ′) → F(U↪→T,γ) of OT -modules.

Definition 4.5. A sheaf F of modules on Crys(X/Wn) is a crystal if each ρu is an
isomorphism. Note that OCrys(X/Wn) is itself a crystal, since OT is a quasi-coherent
sheaf, and so we do have ρu : u∗OT ′ ∼= OT .

We say that F is a crystal of quasi-coherent modules if each F(U↪→T,γ) is a quasi-
coherent module on T .

Example 4.6. Let us consider crystals of quasi-coherent modules on Crys(SpecFp).
Since SpecFp is affine and has only one nonempty open subset, we may identify
objects in SpecFp with P.D. rings (A, I, γ) where I is a nil ideal and A/I = Fp. Since
A is a W (Fp) = Zp-algebra. We may therefore define a crystal of quasi-coherent
modules on Crys(SpecFp/W ) by fixing a Zp-module M and setting F(A,I,γ); = A⊗Zp

M .
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Now that we have the notion of Crystalline site, we can define the Crystalline
cohomology as the cohomology of OCrys(X/Wn).

Definition 4.7. With the assumption as above, we define

Hi(X/Wn) = Hi((X/Wn)Crys;OX/Wn
), Hi(X/W ) = lim←−

n

Hi(X/Wn)

This definition is not computable. Below we show a comparison theorem that
makes the crystalline cohomology computable.

5. comparison result of Crystalline and De Rham

Let j : X ↪→ Z a closed immersion of X in a smooth scheme Z over Wn. If we
look at the structural sheaf, we get OZ → OX . Then, since OZ is a Wn module,
we have a P.D.Wn algebra OZ̃ with a Wn linear map ι : OZ → OZ̃ , such that
OZ → OX factors through OZ → OZ̃ → OX , and X → Z̃ is a divided power
morphism over Wn. We call this Z̃ the divided power thickening of X in Z. As
name suggested, X → Z̃ is a nil-immersion, so they have the same topological
space.

Let Ĩ be the ideal in Z̃ defining OX . Then OX = OZ̃/Ĩ. There exists a unique
integrable connection

d : OZ̃ → OZ̃ ⊗OZ
Ω1

Z/Wn

such that dγn(x) = γn−1(x)⊗ dx, for all x ∈ Ĩ. Thus, OZ̃ ⊗OZ
Ω•

Z/Wn
is a complex

of abelian sheaf on Z̃ that has the same underlying space as X.

Theorem 5.1. There is a canonical isomorphism between crystalline cohomology
and the Hypercohomology Hi(X/Wn) ∼= Hi(X,OZ̃ ⊗OZ

Ω•
Z/Wn

)

Corollary 5.1.1. If Z/Wn is a smooth lifting of X/k, Then Z̃ = Z, and

Hi(X/Wn) ∼= Hi
dR(Z/Wn)

5.1. Properties of Crystalline cohomology. A lot of the properties of Crys-
talline cohomology is true without assuming that X has a smooth lifting over Wn.
But to see these properties, it is easier to assume that X/k is proper smooth and
admits a lifing Z over Wn that’s also smooth.

(1) H∗(X/W1) = H∗
dR(X/k)

(2) Hn
Crys(X/Wm) is a contravariant functor in X. These groups are finitely

generated Wm modules, and zero if n < 0orn > 2dim(X)
(3) There is a cup-product structure

∪i,j : Hi
Crys(X/W )/torsion×Hj

Crys(X/W )/torsion→ Hi+j
Crys(X/W )

Moreover, H2 dim(X)
Crys (X/W ) ∼= W , and ∪n,2dim(X)−n induces a perfect pair-

ing modulo torsion, called Poincare duality.
(4) Hn

Crys(X/W ) defines an integral structure on Hn
dR(X/K).

(5) If l is a prime different from p,

dimQl
Hn(X,Ql) = rank/WHn

Crys(X/W )

(6) We have the universal coefficient lemma

0→ Hn
Crys(X/W )⊗W k → Hn

dR(X/k)→ TorW1 (Hn+1
Crys(X/W ), k)→ 0
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This can be derived from UFC of De Rham cohomology if X has a lift, but
is true even if X does not have a lift.

(7) the absolute Frobenius morphism F : X → X induces a σ-linear morphism
φ : Hn

Crys(X/W )→ Hn
Crys(X/W ) of W-modules.

Example 5.2. Let X be a smooth and proper variety over a perfect field k of pos-
itive characteristic p, and assume that the Using only the properties of crystalline
cohomology mentioned above, then the following are equivalent

• For all n ≥ 0, the W-module Hn
Crys(X/W ) is torsion-free.

• We have dimQl
Hn(X,Ql) = dimk H

n
dR(X/k) for all n ≥ 0 and all primes

l ̸= p.

Example 5.3. Let us give a two fundamental examples.
(1) Let A be an Abelian variety of dimension g. Then, all Hn

Crys(A/W ) are
torsion-free W-modules. More precisely, H1

Crys(A/W ) is free of rank 2g

and for all n ≥ 2 there are isomorphisms Hn
Crys(A/W ) ∼= ∧nH1

Crys(A/W ).
Also, D(A[p∞]) ∼= H1

Crys(A/W ), compatible with the Frobenius-actions on
both sides.

(2) For a smooth and proper variety X, let α : X → Alb(X) be its Albanese
morphism. Then, α induces an isomorphism H1

Crys(X/W ) ∼= H1
Crys(Alb(X)/W )

In particular, H1
Crys(X/W ) is always torsion-free.
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