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1 Hypercohomology

Let X be a complex manifold. We still have the de Rham complex Ω•
X/C given by

0 → OX → Ω1
X/C → · · ·

and naively, we could define
Hn

dR(X/C) = Hn(Γ(X,Ω•
X/C)).

Over the analytification, the Poincaré Lemma gives us that ΩX/C is an acyclic resolution of the
constant sheaf C, and so we have

Hn
dR(X

an,C) = Hn(Γ(Xan,Ω•
X/C)),

meaning we can use the de Rham complex to compute the cohomology. However, this is not the
case for the algebraic de Rham complex. Instead, we will have to use hypercohomology.

Definition 1. Let C• be a cochain complex and let F be a functor, say the global sections functor
Γ(·). An injetive resolution of C• is a quasi-isomorphism of C• with a complex of injective objects
I•, so we get a sequence of morphisms

0 C0 C1 · · ·

0 I0 I1 · · ·
which induces an isomorphism of cohomology of these sequences.
The n-th right hyperderived functor RnF is given by

RnF (C•) = Hn(F (I•)).

So, hypercohomology replaces a complex with a suitable complex of injectives, then uses the
functor applied to that sequence to compute cohomology. As in cohomology of sheaves, we can
take I• to be a resolution of acyclic objects.

Definition 2. The nth algebraic de Rham cohomology of a smooth variety X over a field K is

Hn
dR(X/K) := Hn(X,Ω•

X/K) := RnΓ(X, ·)(Ω•
X/K).

In general, if π : X → Y is a smooth morphism of sheaves, we can consider the nth relative de
Rham cohomolgoy as

H n
dR(X/Y ) := Rnπ∗(Ω

•
X/Y ).
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Relative de Rham cohomology looks like a family of de Rham cohomlogy for each fiber. Also,
quasi-coherent sheave are acyclic over affine schemes and so if X is affine, then hypercohomology
is just the usual sheaf cohomology.

2 Spectral Sequences

Spectral sequences are often used to calculate de Rham cohomology or hypercohomology in general.
Let {Uλ}λ∈Λ be a totally ordered affine open covering on X. For each finite subset I ⊂ Λ, let

UI :=
⋂
λ∈I

Ui

and for each quasicoherent sheaf F on X, set

Cn(F) =
∏

|I|=n+1

F(UI).

We have coboundary maps dn : Cn(F) → Cn+1(F) by mapping

dn(xI)I′ =
n+1∑
i=0

(−1)jxI′\{ij}, I
′ = i1 < i2 < · · · < in+1.

Given a complex F•, we naturally get complexes Cn(F•). And, we get a spectral sequence

...
...

... · · ·

C1(F0) C1(F1) C1(F2) · · ·

C0(F0) C0(F1) C0(F2) · · ·

0 F0 F1 F2 · · ·
From this sequence, we can define the total complex T • by

T n :=
⊕
i+j=n

Ci(F j),

and the coboundary maps by

dnT :=
∑
i+j=n

di,jhor + (−1)idi,jver.

Then, T n is an acyclic resolution of F• and therefore

Hn(F•) = Hn(Γ(T •)).

2



Example 3. When X = E is an elliptic curve, we can compute Hn
dR(E/K) from this spectral

sequence. Let
E : Y 2Z = X(X − Z)(X − λZ).

Then, we can take the open covering U = DZ , V = DY . Then, we have the spectral sequence

0 0

0 OE(U ∩ V ) Ω1
E(U ∩ V ) 0

0 OE(U)×OE(V ) Ω1
E(U)Ω1

E(V ) 0

0 OE(E) Ω1
E(E) 0

Then, we can calculate

H1
dR(E/K) =

{(f, α, β) ∈ OE(U ∩ V )× Ω1
E(U)× Ω1(V ) : df − α− β = 0}

{(g − h, dg, dh)}
.

Then, Cech cohomology gives the short exact sequence

0 → H0(E,Ω1
E) → H1

dR(E/K) → H1(E,OE) → 0

which is the Hodge filtration of E. A basis is given by (0, dx/y, dx/y) and (2y/x, xdx/y, xdx/y).

Spectral sequences allow us to calculate hypercohomology or these sequences.

Definition 4. A spectral sequence is a pair of pages a connecting morphisms (Er, dr) so that
Er =

⊕
i,j≥0E

i,j
r is a lattice of objects and the connecting morphisms dr is a set of maps di,jr : Ei,j

r →
Ei+r,j−r+1

r and dr ◦ dr = 0. Moreover, the relation between the pages is that

Ei,j
r+1 = ker(di,jr )/im(di−r,j+r−1

r ) = H i,j(Er).

The most common example of spectral sequences is by taking filtrations.

Theorem 5. Let Fil• be a bounded decreasing filtration on a complex C•, so we have C• =
Fil0C• ⊃ Fil1C• ⊃ · · · ⊃ Filn+1C• = 0. Define a spectral sequence (Er, dr) with 0th page given by

Ei,j
0 = Gri Ci+j = FiliCi+j/Fili+1Ci+j.

The 1st page is given by
Ei,j

1 = H i+j(Gri C•).

Then, the spectral sequence converges to

Ei,j
∞ = Gri H i,j(C•),

where Fili Hn(C•) = Im(Hn(Fili C•) → Hn(C•).
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Example 6. We saw that T • gives an acyclic resolution of F•. Taking F• to be the de Rham
complex Ω•

X , we can define a filtration on T n by

Fili T n :=
⊕

i+j=ni≥k

Ci(Ωj
X).

The filtration on Hn(Γ(T •)) = Hn
dR(X/K) is the Hodge filtration. The corresponding spectral

sequence is called the Hodge–de Rham spectral sequence

Ei,j
1 = RjΓ(Ωi

X).

3 Gauss–Manin Connection

Definition 7. Recall that a connection on a quasicoherent sheaf E on a smooth scheme S is a
homomorphism

∇ : E → Ω1
S/K ⊗ E

such that ∇(fσ) = f∇(σ) + df ⊗ σ.
We extend this map to

∇i : Ω
i
S ⊗ E → Ωi+1

S ⊗ E
by ∇i(ω ⊗ e) = dω ⊗ e+ (−1)iω ∧∇(e).

A connection is integrable or flat if ∇1 ◦ ∇ : E → Ω2
S ⊗ E is 0. A section of E is a horizontal

section if ∇(e) = 0.

Note that if we have a flat connection ∇ on E , then we get a complex

0 → E → Ω1
S ⊗ E → Ω2

S ⊗ E → · · ·

Now for a smooth morphism of smooth schemes π : X → Y , the Gauss–Manin connection is a
canonical integrable connection on H n

dR(X/Y ). Since π is smooth, we have the exact sequence

0 → π∗(Ω1
Y/S) → Ω1

X/S → Ω1
X/Y → 0.

On this sequence, we have the Koszul filtration from last week

Fili Ωj
X/S = π∗(Ωi

Y/S)⊗ Ωj−i
X/StoΩ

j
X/S.

Then
Gri Ωj

X/S
∼= π∗(Ωi

Y/S)⊗ Ωj−i
X/Y .

Choosing a filtered injective (acyclic) resolution I• of Ω•
X/S that is compatible with this Koszul

filtration, we can consider the relative hypercohomology of Fil• I•. Then, we have that

Ei,j
1 = Ri+jπ∗(GriΩ•

X/S)
∼= Ri+jπ∗(π

∗(Ωi
Y/S)⊗Ω•−i

X/Y )
∼= Ωi

Y/S ⊗Rjπ∗(Ω
•
X/Y ) = Ωi

Y/S ⊗H i
dR(X/Y ).

The Gauss–Manin connection is the composition

∇ : H n
dR(X/Y ) ∼= E0,n

1 → E1,n
1

∼= Ω1
Y/S ⊗ H n

dR(X/Y ).

The maps di,j1 are simply the connecting homomorphisms of the long exact sequence gotten by
applying Rjπ∗ to

0 → Gri+1Ω•
X/S → Fili Ω•

X/S/Fil
i+2Ω•

X/S → Gri Ω•
X/S → 0.
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