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1 Riemann–Hilbert Correspondence

We begin by describing local systems, monodromy, and connections. Let B be a topological space
which is path-connected so it has a universal cover.

Definition 1. A complex local system on B is a sheaf of complex vector spaces on B.

Remark. Given a local system V on B and if B is a complex manifold, then V⊗C OB is a vector
bundle on B. Local systems are also known as locally constant sheafs because locally they are the
constant functions. The setting we care about is with respect to differential equations. If we have
a homogenous system of n linear first order differential equations, then the sheaf of holomorphic
global solutions form a local system.

Proposition 2. If B is simply connected, then any complex local system on B is globally constant.

Proof. Fix a point b0 ∈ B and for any other point b ∈ B, there is a path γ : [0, 1] → B such
that γ(0) = b0, γ(1) = b. Then since [0, 1] is compact, every element of the fiber can be uniquely
extended to a global section on [0, 1] which gives an isomorphism between Vb0 and Vb. Note that
we are using that on a constant sheaf W, there are canonical isomorphisms of global sections Γ(W)
with Wx any fiber. For line bundles, given a path, we don’t get a canonical isomorphism of fibers.

Given two homotopic paths γ1, γ2 from b0 to b, we can cover the square [0, 1]2 deforming the
paths and see that there is a unique way to extend fibers to global sections. This shows that the
isomorphism Vb0 → Vb of fibers depends on the path from b0 to b up to homotopy. Since B is
simply connected, there is a single isomorphism from and therefore global sections are globally
constant.

Remark. Note that this is different from line bundles. For instance, the space Pn is simply connected
topologically but there are many nontrivial line bundles. Also, given any line bundle or vector
bundle, we can take the constant functions to recover a locally constant sheaf. However, this
depends on the particular trivialization and transition maps of the vector bundle and hence is not
canonical.

Given a basepoint b ∈ B, we know that any loop around b that is homotopic to the constant
map is constant and any two homotopic maps give the same endpoints. Thus, we get a well defined
map

π1(B, b)→ GL(Vb)

known as the monodromy representation.
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Theorem 3. The functor from local systems on B to representations of the fundamental group
π1(B, b) given by the monodromy representation is an equivalence of categories.

Proof. We gave the map from local systems to monodromy representations. For the reverse map,
if we have a representation (ρ, V ) of π1(B, b0), then set

V(U) =

{
functions for any path γ : [0, 1]→ U, we have
k : U → V k(γ(1)) = [α−1γ(1) ∗ γ ∗ αγ(0)] · k(γ(0))

}
,

where αb is a fixed path from b0 to b. Whenever U is simply connected, then V(U) is constant
and isomorphic to V . The map is given by fixing a point b ∈ U and mapping to the fibers. It is
also straightforward to check that this is the inverse to the local system to monodromy map from
above.

Now we suppose B is actually a complex manifold and so we can talk about its sheaf of germs
of functions OB.

Definition 4. A vector bundle with connection (E,∇) on B is a holomorphic vector bundle
E → B on B with a C-linear map

∇ : E → E ⊗OB
Ω1
B/C

that satisfies the Leibniz rule
∇(fσ) = f∇(σ) + σ ⊗ df

for f ∈ OB(U) and σ ∈ E(U).
The curvature is defined as∇2 : E → E⊗Ω1

B⊗Ω1
B → E⊗Ω2

B, where Ω2
B := ∧2Ω1

B. A connection
is flat or integrable if it has curvature 0.

If D is a derivation (section of the tangent bundle TB := Ω1,∨
B ), then we can define∇D := E → E

by D ◦ ∇. Then equivalently, a connection is flat if

∇D1D2−D2D1 = ∇D1 ◦ ∇D2 −∇D2 ◦ ∇D1 .

Example 5. Taking E = OB and ∇ := d : OB → Ω1
B is a vector bundle with connection. It is flat

because d2 = 0.
Another example is if B is an abelian variety of dimension g. Then Ω1

B
∼= OgB is free of rank

g with generators dzi. Let M ∈ End(Γ(Ω1
B)) ∼= Mn(C) be a matrix and then we can define a

connection on OnB by
∇(f1, . . . , fn) = (df1, . . . , dfn) +M · f.

Then, the curvature is ∧2M a n× n matrix with ijth term
∑

kmik ∧mkj. So in general, it is not
integrable.

Theorem 6 (Riemann–Hilbert). There is a bijection between local systems and vector bundles
equipped with a flat connection.

Proof. Given a local system V, we have the vector bundle V⊗OB and we can define a connection
on it by acting as the identity on V and the derivation map d : OB → Ω1

B. This is flat.
For the reverse, we map (V,∇) to the sheaf of flat sections, those sections v such that ∇v = 0.

Roughly, a connection gives you a way to compare the fiber of E at two different points depending
on the path taken. You do this by integration. The fact that the connection is flat or integrable
means that this isomorphism of fibers is invariant under homotopy of the path. This gives you a
locally constant sheaf.
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Remark. These connections are actually linear differential equations. Given two connections
∇1,∇2, then they differ by a function linear map because one can compute

(∇1 −∇2)(fe) = f(∇1 −∇2)(e).

So if E = OnB in which case we can take ∇ = d, any other connection ∇ on E can be written as

∇ = d+M,M ∈Mn(Ω1
B).

Setting B = SpecC(x), we have that

∇d/dx =
d

dx
+M,M ∈Mn(C).

If we have e ∈ E so that e,∇d/dx(e), . . . ,∇n−1
d/dx(e) is a basis for E, then

M =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

−b0 −b1 −b2 · · · −bn−1


Now if A is a C(x) algebra so that the derivation d

dx
extends to it, then elements of f ∈ A satisfying

dnf

dxn
+ bn−1

dn−1f

dxn−1
+ · · ·+ b0f = 0

are in bijection with C(x)-morphisms E → A that are compatible with the connection ∇d/dx on E
and d

dx
on A.

2 Gauss–Manin Connection

Let f : X → S be a smooth proper map of manifolds. Then, we have the sheaf of relative 1 forms

Ω1
X/S := Ω1

X/f
∗Ω1

S.

It is a locally free sheaf of dimension the dimension of the fibers of X/S.

Definition 7. The deRham complex of X over S is the complex (Ω•X/S, d
•) given by

0→ R→ OX
d→ Ω1

X/S
d→ · · · d→ Ωn

X/S.

When S = Spec(R) and X a smooth real manifold, the Poincaré lemma says that this gives
a resolution of the constant sheaf R. This means that the Betti cohomology H∗(X,R) can be
identified with the cohomology of this complex, and with the algebraic cohomology of the complex
of Zariski sheaves of differential forms, which we will talk about next week. The same holds for
complex cohomology when we replace R with C. For complex manifolds, there is also a Hodge
filtration.
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When S is not a point, Ω•X/S is a resultion of f−1OS and so it follows that fiberwise relative de
Rham cohomology is

R•f∗(Ω
•
X/S) = R•f∗(C)⊗OS.

One can use topology (Ehresmann’s theorem and proper base change theorem) to show that the
sheaf R•f∗C is a local system on S. The expression on the right has a flat connection given by
1⊗ d. This connection ∇ on H•dR(X/S) is the Gauss–Manin connection.

We also have the Hodge filtration on Ω•X given by

Filp Ωq
X := Im(f ∗Ωp

S)⊗ Ωq−p
X → Ωq

X .

Then from the short exact sequence

0→ Fil1 /Fil2 → Fil0 /Fil2 → Fil0 /Fil1 → 0,

we get the short exact sequence

0→ (Ωi−1
X/S)⊗ Ω1

S → Ωi
X/Fil2 Ωi

X → Ωi
X/S → 0.

It turns out that the boundary map after taking cohomology gives the Gauss–Manin connection
as well

∇ : R•f∗Ω
•
X/S → R•f∗Ω

•
X/S ⊗ Ω1

S.

This will be how we define it algebraically without having to deal with topology.

3 Hodge Filtration

First we talk about Hodge theory, which was originally about finding explicit cohomology classes
on Riemannian manifolds using the Dolbeault or de Rham complex.

Definition 8. Suppose X is a compact complex manifold with Hermitian metric h. It is Kähler
if the real 2-form Imag(h) is closed, and its Kähler cohomomology class is the class in H2(X,R)
associated to Imag(h).

Example 9. The Fubini–Study metric on projective space is given by

ds2 =
n∑
i=1

dzidzi
1 + |z|2

−
∑

1≤i,j,≤n

zizjdzjdzi
(1 + |z|2)2

.

Its associated Kähler form is i
2
∂∂ log|z|2.

Theorem 10. Suppose X is a compact complex manifold admitting a Kähler matric. Then C×
acts naturally on the cohomology on X and induces a splitting

Hn(X,C) ∼= ⊕p+q=nHp,q(X),

where the action of z on Hp,q is given by multiplication by z−pz−q. Furthermore, the action respects
the natural R-structure so that Hp,q(X) = Hq,p(X).
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There is also a natural identification Hp,q(X) ∼= Hq(X,Ωp
X).

We can also define a decreasing filtration

FilpHn(X,C) := ⊕r≥pHr,n−r(X),

and doing so, we get that FilpHn(X,C) can be identified with the Hodge filtration from above

Hn(X,Filp ΩX/C)→ Hn(X,ΩX) ∼= Hn(X,C).

Now if we have a family f : X → S with X a Kähler complex manifold and assume that S is
connected. Fix an n and p ≤ n. For a point s ∈ S, let sp,n := dimC FilpHn(Xs). It turns out that
these Hodge numbers are constant in S if S is small enough.

Definition 11. The period morphism is

pp,n : S → Gr(sp,n, Hn(Xs)).

The idea is that the Gauss–Manin connection allows us to identify the fibersHn(Xs) for different
points s and once we fix an identification, different points correpond to different filtrations on
Hn(Xs) for some basepoint s. So, the period mappings encode the variations of such flags. In
general, it cannot be any filtration. It must satisfy Griffiths transversality.

Proposition 12. Let ∇ be the Gauss–Manin connection on HdR(X). Then

∇(Filp(H•dR(X))) ⊂ Filp−1(H•dR(X))⊗ Ω1
S.

In terms of the period morphism, the differential of the period map of FilpHn
dR(X) in Hn

dR(Xs)
lands inside of

Hom(Filp,Filp−1 /Filp) ⊂ Hom(Filp, Hn(Xs)/Filp).
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