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We will first give an overview of Faltings’ proof of the Mordell Conjecture and then see which
parts were replaced by the new methods of Lawrence and Venkatesh. First, we recall the statement
of the Mordell Conjecture.

Theorem 1. Suppose X/K is an algebraic curve of genus g ≥ 2. Then, the set X(K) is finite.

1 Faltings’ Proof

Faltings proved the Mordell Conjecture through a series of reductions, which we go through here.
The first is the Shafarevich Conjecture for curves.

Theorem 2. There exist only finitely many smooth, projective curves defined over K of genus g
and with good reduction outside a finite set of places S.

Proof. This reduction uses Parshin’s trick, which will be relevant later. Given X/K a curve and
P ∈ X(K) a point, Parshin constructs a finite cover XP → X defined over a finite extensionK1/K,
depending only on X, that is ramified precisely at P . The genus and primes of bad reductions
set S again depends only on X and is independent of the point P . This is done by fixing some
mapping of X → Jac(X) and then taking X ′ to be [2]∗X, the pullback of X under the map
[2] : Jac(X)→ Jac(X). Choosing S to include the prime 2 and enlarging K1 so that Jac(X)[2] is
defined over K1, we get that X ′/X is a Galois cover outside S defined over K1. Let D = [2]−1(P )
and let P ′ ∈ D be some point. Now consider the generalized Jacobian of X ′ with respect to the
divisor D − P ′ on X1. This is like the ray class field, we take Pic0 over all line bundles that are
larger than D − P ′ (functions that vanish on D − P ′). We can embed X ′ − (D − P ′) into this
generalized Jacobian Jac(X ′, D−P ′) and again pull back by [2] to get our desired curve XP , which
is smooth over X1 away from D − P ′. Mapping down to our original curve X gives a curve that
is branched only at P .

Thus, we get a map
X(K)→Mg′(K

′, S ′)

to curves of bounded genus over some fixed number field K ′, with good reduction outside a finite
set of places S ′ of K ′. The latter set is bounded. Moreover, this map is finite to one due to De
Franchis’ theorem which states that if X, Y are curves and the genus of Y is ≥ 2, then HomK(X, Y )
is finite.
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The second simple step is to pass to the weak Shafarevich conjecture over abelian varieties by
taking Jacobians of the aforementioned curves.

Theorem 3. There exist finitely many abelian varieties over K of dimension g, good reduction
outside S.

Proof. Torelli’s theorem says that by taking Jacobians, the map from curves to abelian varieties
with a fixed choice of principal polarization is injective. The map to just the set of abelian varieties
is finite to one because a given abelian variety has only finitely many principal polarizations.

The third step is to use the Faltings’ height to reduce the question about isomorphism equiva-
lence to isogeny equivalence.

Theorem 4. There exist finitely many abelian varieties over K of dimension g, good reduction
outside S, up to isogeny.

Proof. This follows from showing that there are finitely many isomorphism classes of abelian
varieties over K in a given K-isogeny class. This will follow from a Northcott property on heights
and a comparison of how the height changes from an isogeny. He proves that for a fixed abelian
variety A, there exists an N ∈ N, depending only on the isogeny class of A, such that if A → B
is a K-isogeny of degree coprime to N , then h(A) = h(B). And, he proved that the Faltings
height of isogenies dividing a power of N have bounded difference h(B)− h(A). This shows that
in an isogeny class of A, the Faltings height is bounded, and by the Northcott property, there are
finitely many abelian varieties in an isogeny class. Note that the proof of these theorems rely on
computations with group schemes and p-adic Hodge theory (Tate decomposition).

The last reduction is from isogeny classes to ℓ-adic representations. Let

Tℓ(A) := lim←−A[ℓn], Vℓ(A) := Tℓ(A)⊗Qℓ

denote the Tate module. Then the Galois group GK := Gal(K/K) acts on Vℓ, a Qℓ-vector space
of dimension 2g. Moreover, by studying the natural map

HomK(A,B)⊗Qℓ → HomGK
(Vℓ(A), Vℓ(B)),

we see that if A,B are K-isogenous, then they give rise to isomorphic GK-modules. Thus, we get
a well defined map from abelian varieties up to isogeny to isomorphism classes of 2g-dimensional
ℓ-adic GK-representations. The latter space is not finite, but Faltings shows that the image is
finite and the map has finite fibers. The latter statement comes from the following theorem.

Theorem 5. If A,B are abelian varieties defined over K, the natural map

HomK(A,B)⊗Qℓ → HomGK
(Vℓ(A), Vℓ(B))

is an isomorphism.

This states that if two abelian varieties have isomorphic Tate modules, then they are isogenous,
showing that the map from abelian varieties up to isogeny to Tate modules is not only finite to
one, but an injection.

The statement about finiteness of Galois representations comes from two statements. The first
is a semisimplicity argument.
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Theorem 6. If A is an abelian variety over K, then Vℓ(A) is a semi-simple representation of GK.

Thus, it suffices to consider only semisimple representations. Faltings proves the follwing about
those:

Theorem 7. Let K be a number field and S a finite set of places. There are finitely many
isomorphism classes of rational semisimple ℓ-adic representations of GK of dimension d unramified
outside S.

Proof. This follows from a statement that two representations are isomorphic if and only if the
traces of Frobenius agree at a finite set of places. The existence of this finite set of places is by
Chebotarev density theorem (choosing primes so that Frob generates GK) and then the traces are
Weil q-integers, of which there are finitely many by Hermite-Minkowski.

To summarize, Faltings performs the following reductions

{X(K)} → {C/K with good reduction outside S}

→ {A of dimension g with good reduction outside S}/{isom}

→ {A of dimension g with good reduction outside S}/{isog}

→ {Rational semisimple ℓ-adic representations of dimension 2g unramified oustide S}.

The last set Faltings proves is finite by Chebotarev density theorem and Hermite–Minkowski. This
fact will be used also by Lawrence and Venkatesh.

2 Lawrence–Venkatesh’s Proof

The proof of Lawrence and Venkatesh is similar to Faltings proof in that it still uses Parshin’s trick
to reduce to looking at curves with good reduction outside a fixed set of places and then using
Faltings result on the finiteness of rational semisimple ℓ-adic representations unramified outside
a fixed set of places. The general setting is a smooth projective family X → Y , where Y is a
smooth K-variety, and S a finite set of places outside of which Y has a smooth model, and OS

the ring of S-integers in K. Suppose that we have integral models X → Y over OS. For every
point y ∈ Y(OS) and p unramified in K and not in S, we get a Galois representation ρy of GK on
H∗

ét(Xy,K ,Qp).
In the case of Faltings theorem, Y is our curve of genus g ≥ 2 and X is a family of abelian

varieties over Y given by Parshin’s trick and then taking the Jacobian. What Faltings shows is that
the Galois representation on H∗

ét(Xy,K ,Qp) is semisimple for all points y and the representation ρy
determines Xy up to isogeny.

The method of Lawrence and Venkatesh is weaker in that sense. Instead of looking at ρy, they
look at ρy,v, the restriction of the representation to GKv for some place v of K above p. They then
show that the map

{Y (K)} → {ρy,v}

has finite fibers, and ρy,v is semisimple for all but finitely many y ∈ Y (K).

3



For general X → Y , they show that the map

{Y (K)} → {(ρssy )v}

of taking the semisimplification of ρy, and then restricting to GKv ⊂ GK , is not finite to one, but
has fibers that are not Zariski dense (if Y is a curve, this means finite to one). This has applications
in showing that Y (K) is not Zariski dense in Y for some class of hypersurfaces.

The reason of restricting to GKv is that one can use p-adic Hodge theory to determine ρy,v. It
says that every restricted representation corresponds to a triple

(HdR(Xy/Kv),Fil
•, ϕ),

where ϕ is a semilinear Frobenius map and Fil• is the Hodge filtration on HdR. The Gauss–Manin
connection identifies HdR(Xz/Kv) ∼= HdR(Xy/Kv) as z ∈ Y (Kv) varies in a residue disk around
y and under this identification, the only thing that varies is the Hodge filtration. Thus, we get a
map

Y (Kv)→ Gr(HdR(Xy, Kv),Fil
•)(Kv)

where Gr is a Grassmannian flag variety which identifies the filtration in the total space of
HdR(Xy/Kv). This is the p-adic period map. This is an injective map but different filtrations
can give rise to isomorphic ϕ-modules. An isomorphism is given by a linear endomorphism of
HdR(Xy/Kv) that commutes with ϕ. Thus, to show that the map

Y (K)→ {ρy,v}

is finite to one, it suffices to show that the intersection of the image of the period map has finite
intersection with the orbit of the centralizer Z(ϕ) of ϕ acting on ρy,v. This will be done by showing
that the orbit of ρy,v under Z(ϕ) is contained in a proper algebraic subvariety of Gr, and that the
image of Y (Kv) in the Grassmannian is Zariski dense. Then the intersection points are the zeroes
of a nonvanishing Kv-analytic function on a residue disk, and therefore finite. This is the same
approach used by Chabauty and Kim.

Thus, we need to show three things:

1. The image of Y (Kv) under the period map is Zariski dense.

2. The orbit of Z(ϕ) is proper algebraic subvariety.

3. ρy is semisimple for all but finitely many points Y (K).

The first point is done by comparing the p-adic period map to the complex period map. Once
this is done, it suffices to show that the image of Y (C) is Zariski dense under the period map, and
this can be done by appealing to topology. The action of the fundamental group π1(Y ) on the
filtration is the monodromy representation. The fact that this monodromy representation is large
was previously shown by others (Looijenga, Grunewald et al., Slater and Tshishiku).

For the second point, the Frobenius map ϕ is a semilinear operator on a vector space over an
unramified extension Lw over Qp. If [Lw : Qp] is very large, this semilinearity gives a strong bound
on the size of the centralizer. In order to guarantee that the size of Lw = Kv is large, remember
that K was actually K ′ and not K. It is a finite extension of our base field determined by the
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field of definition of Parshin’s trick where we pulled back by [2]. But, we can pull back by [2n] and
as we set n→∞, the degree of K goes to infinity as well. Then, some argument shows that this
makes Lw very large.

Finally the last step is very similar to the previous two steps. Suppose that the local repre-
sentation ρy is not semisimple. Then, there is some subrepresentation W of ρy and under p-adic
Hodge theory, this corresponds to a Frobenius-stable subspace WdR ⊂ HdR(Xy/Kv). Moreover, by
again comparing to the complex period map, the Hodge filtration of WdR must have prescribed
dimensions. So, we again get an unlikely intersection problem where the orbit of Z(ϕ) is small and
so the orbit of the bad WdR is very small and intersects with Y (Kv) only finitely many times.

Outline:

1. 4/19 The Gauss-Manin Connection and Complex Period Morphism Define local
systems, monodromy, and connections, and state Riemann–Hilbert. Give the definition of
de Rham cohomology and the Gauss–Manin connection over C. Give the construction of
the period map and period domain over C for K ahler Manifolds as well. This should follow
[Con] and [Lit].

2. 4/26 Algebraic de Rham cohomology Define hypercohomology and algebraic de Rham
cohomology. Show that it agrees with the classical de Rham cohomology. This is the first
two pages of [Gro66]. Give the algebraic definition of the Gauss–Manin connection following
the first section of [KO68].

3. 5/3 Crystalline Cohomology Define the crystalline site as well as crystals and crystalline
cohomology. Follow the first two sections (I.1, I.2) of [CL98].

4. 5/10 p-adic Hodge Theory Review the theory of local fields and their ℓ-adic Galois
representations. State the basic theorems with Fontaine’s period rings and if time sketch the
construction of the period rings. The basic theorems are given in the first two sections of
[Ill90] and Section 2 of [Ber04]

5. 5/17 The p-adic Period Morphism Focusing on the p-adic period mapping, cover Section
3 of [LV20] by going through all the proof. Assume and cite the results of Section 2 of [LV20]
as necessary.

6. 5/24 The S-unit Equation Give the proof of the S-unit equation, that there are finitely
many pairs u, v ∈ O×

S of S-integer units such that u + v = 1 following Section 4 of [LV20].
Prove Theorem 4.1 and Lemma 4.2 after stating but no need to prove Lemma 4.3 and 4.4.

7. 5/31 Proof of Faltings’ Theorem Black box the Kodaira-Parshin family and use results
about it (e.g. monodromy, simplicity) to prove Faltings’ Theorem following Section 5 of
[LV20]. State Proposition 5.3 and go through the proof of Theorem 5.4.
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