Lecture 9: Angular Momentum

Force and Torque
point partide moves one way
rigid extended object moves in two ways

$\vec{\tau}=\vec{r} \times \vec{F}$
so $\tau=r F \sin \theta$
$\binom{$ into the pase, by }{ the right hand rule }

Bottom line: With extended ofseets it matters where the forces are expected.

(motionless)

(will rotate)

Note that for statics $\left(\vec{F}, \sum_{i} \vec{F}_{i}=0\right)$ we can measoce the torques form any pint point.

Proof: $\vec{\tau}=\sum_{i} \vec{r}_{i} \times \vec{F}_{i}$
$\int($ shift pivot by $\vec{d})$

$$
\sum_{i}\left(\vec{r}_{i}+\vec{d}\right) \times \vec{F}_{i}
$$

11

$$
\begin{aligned}
& \vec{\tau}+\sum_{i} \vec{\jmath} \times \vec{F}_{i} \\
& \vec{\tau}+\vec{d} \times \sum_{i} \vec{F}_{i}
\end{aligned}
$$

Next, let us draw an analogy:

- For an object in force equilibriven,

$$
\begin{aligned}
& 0=\sum_{i}^{\sum_{i} \vec{F}_{i}}=\underbrace{\sum_{i} m_{i} \vec{a}_{i}}_{i}=\frac{d}{d t}\left(\sum_{i} m_{i} \vec{v}_{i}\right) \\
& \sum_{i} m_{i} \vec{v}_{i}=\frac{\sum_{i} \vec{p}_{i}=\text { cast }}{\text { momentum conserved }}
\end{aligned}
$$

- For an objeet in forque equilibrium,

$$
\begin{aligned}
& 0=\underbrace{\sum_{i} \vec{\tau}_{i}=\sum_{i} \vec{r}_{i} \times \vec{F}_{i}=\sum_{i} m_{i} \vec{r}_{i} \times \vec{a}_{i}} \begin{array}{l}
=\frac{d}{d d}\left(\sum_{i} m_{i} \vec{r}_{i} \times \vec{v}_{i}\right) \\
\text { constant }=\sum_{i} m_{i} \vec{r}_{i} \times \vec{v}_{i}\left(\begin{array}{l}
\sin a \\
\vec{v}_{i} \times \frac{d}{d f}\left(\vec{r}_{i} \times \vec{v}_{i}\right) \\
\text { angular momendum }
\end{array} \vec{r}_{i} \times \vec{a}_{i}\right.
\end{array}) \\
& \vec{L}_{i}=\vec{r}_{i} \times \vec{l}_{i}
\end{aligned}
$$

where $\sum_{i} \vec{L}_{i}=$ const
angular morentiom
conserved
《《(demo: "spinning sceew" $\rangle\rangle\rangle$
(ex.1) linear motion

choose an arbidears point in space as the axis of rotation
(ex. 2) circular motion

$$
\begin{aligned}
& \vec{L}=\sum_{i} m_{i} \vec{r}_{i} \times \vec{v}_{i} \\
& \text { distance for } \\
& \Rightarrow L=\sum_{i} m_{i} r_{i} v_{i}=\underbrace{}_{\sum_{i} \sum_{i} m_{i} r_{i}^{2} r_{i}^{2}, w} \\
& \text { "moment of inertia" }
\end{aligned}
$$

Moment of inertia encodes all the geometric properties of the object relevant to rotation.

《\|(demo: "bicyde wheel" $\rangle)\rangle$

