Lecture 5: Gravity and Circular Motion
Newton's huge insight: the laws that govern falling apples also govern the mon

Let's derive $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.

equivalent from the
point of view of gravity due to spherical symmetry

$$
F=-\frac{G m M}{R^{2} \uparrow}=-m g
$$

effectively constant because the Earth's mass and our distance from Earth's carter do not change very much

$$
\begin{aligned}
\Rightarrow g & =\frac{G M}{R^{2}}=\frac{\left(6.7 \times 10^{-11} \mathrm{~m} / \mathrm{kg}_{g} \mathrm{~s}^{2}\right)\left(6.0 \times 10^{24} \mathrm{k}_{9}\right)}{\left(6.4 \times 10^{6} \mathrm{~m}\right)^{2}} \\
& \sim 9.8 \mathrm{~m} / \mathrm{s}^{2} J J
\end{aligned}
$$

Conversely, the moon is falling but missing the Earth.

Circular Motion

Something is pushing the Earth off a struight-line course

Let's deduce the acceleration.
Consider an object in uniform circular motion:

$$
\begin{aligned}
\vec{r}(t) & =(x(t), y(t)) \\
& =(r \cos \omega t, r \sin \omega t)
\end{aligned}
$$

Also, define the pard,

$$
T=\frac{2 \pi}{\omega}
$$

the time it tales for one cush.

$$
\vec{V}=\frac{d \vec{r}}{d t}=(-r \omega \sin \omega t, r \omega \cos \omega t)
$$

Note that $\vec{v} \cdot \vec{r}=0$.
Also, $v=\sqrt{\vec{V}^{2}}=\sqrt{r^{2} \omega^{2}\left(\cos ^{2} \omega t+\sin ^{2} \omega t\right)}$

$$
\begin{aligned}
& \Rightarrow v=w r \\
\vec{a}=\frac{d \vec{v}}{d t} & =\left(-r \omega^{2} \cos \omega t,-r w^{2} \sin \omega t\right) \\
& \Rightarrow \vec{a}=-w^{2} \vec{r}
\end{aligned}
$$

the faster the rotation.
the more the acceleration
unit vector

$$
\hat{r} \equiv \vec{r} / r
$$

Lifting from acceleration to face:
(eg 1) For this apparatu, $\vec{P}_{\text {conjipuld }}=\vec{F}_{\text {bx }}$

$$
\begin{aligned}
& m_{1} \omega^{2} r=m_{2} g \\
& \Rightarrow r=\frac{m_{2} g}{m_{1}} \frac{1}{\omega^{2}}=\frac{m_{2} g}{m_{1}}\left(\frac{T}{2 \pi}\right)^{2} \\
& s_{0}{ }^{2} \propto T^{2}
\end{aligned}
$$

《(|demo: "swinging flail" $\rangle\rangle\rangle$
(eg2) For the Earth, $\vec{F}_{\text {ceatinpted }}=\vec{F}_{\text {gave }}$

$$
-m \omega^{2} r \hat{r}=-\frac{G_{m} M^{2} \hat{r}}{r^{2}}
$$

botton lae: rotuation spead is dixealb cultis

$$
\Rightarrow r^{3}=\frac{G M}{w^{2}}=G M\left(\frac{T}{2 \pi}\right)^{2}
$$

\Rightarrow Mepter's 3rd Law : $r^{3} \propto T^{2}$

"1 "
Lagrange points orbit the sun at the same frequency as the Earth, ie are rotationally synchronized.
lots of space junk, es "Their" of the giant - impact hypoobereis

- L_{3}
(sun)

Ls

This kind of logic can be applied to galaxies... and it fails!!!

\Rightarrow gravitatiand prof of dark matter

Mystery of Universe \#2: "What is dark matter?"

