Lecture 3: Newton's Laws The Laws i) Principle of Inerdia: "in the absence of force, an object stays at cest or in uniform modion "] (equivalent) ball at rest doesn't more a laws of physics are the same for inerdial reference frame Galileo's Thought Experiment: (focever)

ii) Force Law:

Fragilie

ce an object accelerates proportionally

to the force exercised on it "

___ proportionality constant defines mass !!?

F = M a -> heavy nasses accelerate slaver 1 -> lighter masses accelerate heavier

Fgrav

° ★

trajectory of the rocket

a = dr and v = dr $\overline{F} = (F_x, F_y, F_y)$ $\vec{\alpha} = (\alpha_{\star}, \alpha_{2}, \alpha_{4})$ $\vec{v} = (v_x, v_y, v_z)$ $\vec{x} = (k, y, t)$ This is the ocigin of Crucially, X, y, t are independent! parabolic motion. iii) Action Reaction: "The force exorded on object 1 by object 2 is equal and opposite $\vec{F}_{11} = -\vec{F}_{21}$ to the forg exerted on object 2 by object 1 " contusion iii a) Seems undividive but that's because we feel accelectorions. demo: "skateboard + ball"

