Lecture 2: Kinematics + Reference Frames

Kinematics

$$
x(t)=\text { "position as a function of Hie" }
$$

$x(t)$

$$
\bar{V}=\text { "average velocity" }\binom{\text { defined for a finite }}{\text { time interval }\left[t_{1}, t_{2}\right]}
$$

Taking the limit $t_{2} \rightarrow t_{1}$ yields the instantaneous velocity, at time t_{1}.

More glenerally,

"instentameos vebciits"

$$
\begin{aligned}
& V(t)=\lim _{d t \rightarrow 0} \frac{x(t+d t)-x(t)}{d t} \\
& \text { Sometimes " } t \text { " } \\
& \text { depondence } 1 \text { reppiescel } \\
& =\underbrace{\frac{d x(t)}{d t}=\frac{d x}{d t}=\dot{x}}
\end{aligned}
$$

lots of diffecent notation
"instorntomeas accelenation"

$$
\begin{aligned}
a(t)=\lim _{d t \rightarrow 0} \frac{v(t+d t)-v(t)}{d t} & =\frac{d v}{d t}
\end{aligned}=\frac{d^{2} x}{d t^{2}}
$$

\ldots and so on....

Recall that $\frac{d}{d t}($ constart $)=0$.
Thus, each derivative has less informadion.

$$
\Downarrow
$$

various functions of t

$$
\begin{aligned}
& \begin{array}{l}
x=\text { position } \longleftarrow \quad \begin{array}{c}
\text { condains } \frac{d \mu}{\text { infocmation }}
\end{array} \\
\frac{d x}{d t}=\text { velcitit } \longleftarrow \quad \begin{array}{c}
\text { initial pasition } \\
\text { gone }
\end{array}
\end{array} \\
& \frac{d^{2} x}{d t^{2}}=\text { acceleration } \longleftarrow \quad \begin{array}{l}
\text { initial proition and } \\
\text { velocids gave }
\end{array} \\
& \frac{d^{3} x}{d t^{3}}=\text { jeck } \\
& \text { initial posidion, } \\
& \text { valocits, and } \\
& \text { aceslenation goee. }
\end{aligned}
$$

e.9. consider a trajectory,

$$
x(t)=c_{0}+c_{1} t+\frac{c_{1}}{2!} t^{2}+\frac{c_{3}}{3!} t^{3}+\cdots
$$

$$
\begin{aligned}
& \rightarrow v(t)=\frac{d x(t)}{d t}=c_{1}+c_{1} \text { gore } t+\frac{c_{3} t^{2}}{4!} . \\
& \rightarrow a(t)=\frac{d^{2} x(t)}{d t^{2}}=c_{2}+c_{0} c_{1} \text { gore } t+\cdots
\end{aligned}
$$

Thus

$$
\begin{aligned}
& X(0)=c_{0}=\text { initial position } \\
& V(0)=c_{1}=\text { initial velocity } \\
& a(0)=c_{2}=\text { initial acelention }
\end{aligned}
$$

If you know $x(t)$, there is no work to do.

Every physics problem has as input parotid info, e.y yow are given velocity or acceleration, ate.

$$
a(t) \rightarrow v(t) \rightarrow x(t)
$$

Free fall
fact of the day: things foll down
$a(t)=$ vertical acceleration on Earth

$$
=\left[\begin{array}{l}
-9=-9.8 \mathrm{~m} / \mathrm{s}^{2}=\text { constant } \\
=\text { down curls }
\end{array}\right.
$$

for comparison,

$$
\begin{aligned}
& g_{\substack{\tau \equiv s L A \\
\left(\begin{array}{ll}
\text { lugrectes } \\
\text { mole }
\end{array}\right)}} \sim 1.1 \mathrm{~g} \\
& \operatorname{ginn}_{\substack{\text { surface }}} \sim 28 \mathrm{~g}
\end{aligned}
$$

$$
\begin{aligned}
V(t)=\int a(t) d t=\int-g d t & =-g t+\cos \operatorname{ant} t \\
& =-g t+V_{0}
\end{aligned}
$$

initidel velocity

$$
\begin{aligned}
x(t)=\int v(t) d t & =\int-g t+v_{0} d t \\
& =-\frac{1}{2} g t^{2}+v_{0} t+\text { cost initial } \\
& =-\frac{1}{2} g t^{2}+v_{0} t+\widetilde{x_{0}} \text { position }
\end{aligned}
$$

《(《 demo: "penny feather $)\rangle\rangle\rangle$

Referena Frames
The laws of physics are the same irrespective of whether you are at rest or at constant velocity.

(ignore acceleration from gravity for now)

Super Deep Fact. the question "are we motionless" $\# 1$ is intrinsically meaningless
\rightarrow as meaningless as asking" an I upside down" in empty space
"are we moving relative to ...?"
 "are we accebrain?"
shooting stor $\binom{$ at }{ cst }
important nomenclature:

$$
\text { "inertial" }\binom{a=0}{v=\text { canst }}
$$

$$
\text { "nsh-inerdial" }\binom{a \neq 0}{v \neq \text { canst }}
$$

$\langle\langle($ demo: "vertical canon" $)\rangle\rangle$

$$
\begin{aligned}
& X(t)=\widetilde{V}_{x 0} T \text { inidial velocits } \\
& \text { in } x \text { diceation } \\
& Y(t)=-\frac{1}{2} g t^{2}+\widetilde{V}_{y \circ} \uparrow \text { ing indial velcicection }
\end{aligned}
$$

Q1) What's the shape of the pook?
$\begin{aligned} & \text { Solve for } t \\ & \text { and plog backe }\end{aligned} \Rightarrow t=x / v_{x_{0}}$
so $y=-\frac{1}{2} g\left(\frac{x}{v_{x_{1}}}\right)^{2}+v_{y_{0}}\left(\frac{x}{v_{x_{0}}}\right)=y(x)$ defines a parabola

Q2) Where does it land?
Solve for $y=0=\frac{x}{v_{x_{0}}}\left(-\frac{1}{2} 9 \frac{x}{v_{x 0}}+v_{y_{0}}\right)$
\Rightarrow either $x=0$ initial

$$
\begin{aligned}
x=\frac{2 V_{x_{0}} V_{y 0}}{9}
\end{aligned}
$$

Q3) What angle maximizes distance?

Define $V_{x_{0}}=V_{0} \cos \theta$

$$
\begin{aligned}
& V_{y_{0}}=v_{0} \sin a \\
& V_{0}=\sqrt{v_{x_{0}}^{2}+v_{y 0}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
X_{\text {Land }} & =\frac{2}{9} V_{0}^{2} \cos \theta \sin \theta \\
& =\frac{v_{0}^{2}}{9} \sin 2 \theta
\end{aligned}
$$

Extremize $\frac{d X_{\text {Land }}}{d a} \sim \cos 2 a=0 \Rightarrow \theta=45^{\circ}$

《(${ }^{\text {demo: "colliding marbles" })\rangle 》\rangle}$
$\left\langle\left\langle\left(\right.\right.\right.$ demo: "monkey shoot $\left.\left.\left.{ }^{\prime \prime}\right)\right\rangle\right\rangle$

