Lecture 14: Orbits I
In the next series of lectures we will discuss orbital dynamics governing the motions of planets.

There is some mathematical hearyliftring needed. So let us ceview some basic fats.

- Cartesian condinates "unit" veetions where $\dot{x}^{2}=j^{2}=1$

The cadial unituedtr is converself defreet as $\vec{r}=\vec{r} / r$.

unit sectors DO depend os where you ace when in polar
unit vedas vries in t
circular modion: $\vec{r}(t)=r(t) \hat{r}(t)$

How does $\hat{r}(t)$ change with dive???
equate Cartesian. and polar eqs: $\gamma \cos 6 \hat{x}+/ \sin \theta \hat{y}=\gamma \hat{r}$

$$
\begin{aligned}
& \hat{r}=\cos \theta \hat{x}+\sin \theta \hat{y} \\
& \hat{\theta}=-\sin \theta \hat{x}+\cos \theta \hat{y}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d \hat{r}}{d \theta}=-\sin \theta \hat{x}+\cos \theta \hat{y}=\hat{\theta} \\
& \frac{d \hat{\theta}}{d \theta}=-\cos \theta \hat{x}-\sin \theta \hat{y}=-\hat{r}
\end{aligned}
$$

while $\frac{d \hat{r}}{d r}=\frac{d \hat{G}}{d r}=0$ (nor dependence!)

Applying the chain ouse,

$$
\begin{aligned}
& \frac{d \hat{r}}{d t}=\frac{d \theta}{d t} \frac{d \hat{r}}{d \theta}=\hat{\theta} \frac{d \theta}{d t} \\
& \frac{d \hat{\theta}}{d t}=\frac{d \theta}{d t} \frac{d \hat{t}}{d \theta}=-\hat{r} \frac{d \theta}{d t}
\end{aligned}
$$

Lat's return to some physical quantities.
(e xi) velocity

$$
\vec{V}=\frac{d \vec{r}}{d t}=\frac{d}{d t}(r \hat{r})=\frac{d r}{d t} \hat{r}+r \frac{d \hat{r}}{d t}
$$

$$
\underbrace{\vec{v} \dot{V}_{\theta} \hat{r}+\underbrace{r \dot{\theta}}_{\omega} \hat{\theta}}_{V_{r}}
$$

(ex 2) angular momentum

$$
\begin{aligned}
\vec{L}= & \vec{r} \times \vec{p}=m \vec{r} \times \vec{v} \\
= & m \vec{r} \times(\dot{r}+2+r \dot{e} \hat{e}) \\
& \text { by coos prod identity }
\end{aligned}
$$

$$
=m r^{2} \dot{\theta}(\hat{r} \times \hat{\theta})=\hat{z}
$$

So $\vec{L}=m r^{2} \dot{\theta} \hat{Z}$

