

A hollow box of mass m_b sliding down an inclined plane has a pendulum of mass m_p attached by a massless, inextensible string as shown. Let μ be the coefficient of kinetic friction between the inclined plane and the box.

- a) (1 point) Sketch the free body diagram and write down the equations from Newton's second law for the box and pendulum as a single unit, where the total mass is $M = m_b + m_p$.
- b) (1 point) Solve for the acceleration a down the plane in terms of g, θ and μ .
- c) (1 point) Now move into the accelerating frame of the box. Sketch the free body diagram for the pendulum including any "fictious" forces.
- d) (1 point) Find the equilibrium angle ϕ the pendulum makes with the line perpendicular to the top of the box for both the case of no friction ($\mu = 0$) and for the case of friction ($\mu \neq 0$) between the box and the inclined plane.