QP48

Two masses connected by a string slide down a ramp making an angle θ with the horizontal, as shown in the figure below. The mass m_{1} has a coefficient of kinetic friction μ_{1} and the mass m_{2} has a coefficient of kinetic friction μ_{2}. Assume the string is massless and remains taut as the masses slide down the incline.

a) (4 points) Draw the free body diagrams for both masses, showing the forces acting on each as they slide down the ramp. Write down the equations of Newton's Second Law for both m_{1} and m_{2}.
b) (4 points) Find the acceleration a of the masses and the tension T of the string. Give your answer in terms of $m_{1}, m_{2}, \mu_{1}, \mu_{2}, g$ and θ.
c) (2 points) Find the condition on μ_{1} and μ_{2} such that the string indeed remains taut as the masses slide down the incline.

