

Two vectors $\vec{a} = 3\hat{i} + \hat{j}$ and $\vec{b} = \hat{i} + 3\hat{j}$ lie in the x - y plane as shown.

- a) (1 point) What is the magnitude of the projection of \vec{b} upon \vec{a} indicated as l in the figure?
- b) (1 point) What is the angle between \vec{a} and \vec{b} as indicated as θ in the figure?
- c) (1 point) What is the magnitude and direction of the cross product $\vec{a} \times \vec{b}$ Hint: you might want to calculate the magnitude without calculating a determinant by using your answer to (b) and the fact that $sin^2\theta + cos^2\theta = 1$ for any angle θ .
- d) (1 point) Draw a vector \vec{c} connecting the endpoints of \vec{a} and \vec{b} . What is the area of the triangle enclosed by the vectors \vec{a} , \vec{b} and \vec{c} ?