QP43

Two vectors $\vec{a}=3 \hat{i}+\hat{j}$ and $\vec{b}=\hat{i}+3 \hat{j}$ lie in the $x-y$ plane as shown.
a) (1 point) What is the magnitude of the projection of \vec{b} upon \vec{a} indicated as l in the figure?
b) (1 point) What is the angle between \vec{a} and \vec{b} as indicated as θ in the figure?
c) (1 point) What is the magnitude and direction of the cross product $\vec{a} \times \vec{b}$ Hint: you might want to calculate the magnitude without calculating a determinant by using your answer to (b) and the fact that $\sin ^{2} \theta+\cos ^{2} \theta=1$ for any angle θ.
d) (1 point) Draw a vector \vec{c} connecting the endpoints of \vec{a} and \vec{b}. What is the area of the triangle enclosed by the vectors \vec{a}, \vec{b} and \vec{c} ?

