QP35

The time derivative of the acceleration is called "jerk", i.e. $j(t)=\frac{d a(t)}{d t}$.
a) (1 point) For motion under constant jerk, j, derive equations for the acceleration $a(t)$, the velocity $v(t)$, and the position $x(t)$. Use x_{0} for the initial position, v_{0} for the initial velocity, and a_{0} for the initial acceleration.

Two cars start a race at rest. Car A accelerates at constant rate a, while Car J moves with constant jerk j and zero initial acceleration. Part way through the race, at $t=1 \mathrm{~s}$, the cars are tied.
b) (1 point) In a single graph, sketch $x(t)$ for both Car A and Car J, and label the curves accordingly.
c) (1 point) Who was ahead at $t=0.5 s$?
d) (1 point) Which car will win the race?

