QP32

A uniform disk of mass m and radius r begins to slide down an inclined plane with an initial velocity v_{0} at its center of mass at time $t=0$. The inclined plane has a surface frictional coefficient μ and forms an angle θ relative to the ground, as shown below. At time $t=t_{1}$, the disk begins to roll down the plane without slipping. The local gravitational acceleration is g, pointing vertically down.

Figura 1A
a) (2 points) Express t_{1} in terms of v_{0}, g, μ and θ.
b) (1 point) Find the minimal frictional coefficient μ (in terms of g and θ) required for the disk to achieve pure rolling motion?

At $t>t_{1}$ the disk reaches the end of the inclined plane with a final speed v_{f} at its center of mass, and it becomes stuck instataneously upon impact to the end of a uniform thin rod of length L and mass M hanging vertically from the ceiling. The rod-disk assembly swings to the right, as shown below.

Figure 1B
c) (1 point) Find the moment of interia I of the rod-disk assembly about the axis through the pivot.
d) (2 points) Find the angular momentum (both the magnitude and direction) of the rod-disk assembly about the axis through the pivot after the impact. Express your answer in terms of v_{f}, m, M, r and L. Discuss the condition required for the rod-disk assembly to swing to the right.

