QP23

An hour glass of sand sits on a scale. Initially all the sand (of total mass m) in the glass (of mass M) is held in the upper reservoir. At $t=0$, the sand is released and it falls at a constant rate $d m / d t=\lambda$ to the bottom of the lower reservoir, as shown. Find the reading of the scale as a function of time.
a) (1 point) From the time $t=0$ at which the sand is released, until the time $t=t_{1}$ at which it starts to arrive at the bottom of the reservoir.
b) (1 point) From $t=t_{1}$ until the time $t=t_{2}$ at which all of the sand has left the upper reservoir.
c) (1 point) From $t=t_{2}$ until the time $t=t_{3}$ at which all the sand has reached the bottom.
d) (1 point) For all times $t>t_{3}$.
e) (1 point) Sketch the reading of the scale as a function of time, assuming that $m<M$.

