QP2

As shown in the sketch above, a spaceship on a distant planet has landed on a ledge above a vast flat horizontal plain, a distance $L=100 \mathrm{~km}$ from a volcano. Just as the astronaut team emerges to survey the area, a boulder is ejected at $t=0$ from the cone of the volcano, at the same height as the ledge, with an initial speed $v_{0}=1 \mathrm{~km} / \mathrm{sec}$ and an inital angle θ_{0} with the horizontal. Measurements by the team show that the boulder is following a parabolic trajectory, that it reaches its maximum height at $t=200 \mathrm{sec}$, and that it is headed directly for the base of the ship! The astronauts clamber back into the ship and fire their boosters at time t_{0} when the boulder is falling at a vertical height of 10 km above the ledge.
Note that numerical answers are required for parts a, b, c and e below.
a) (2 points) Find the angle θ_{0} and the acceleration of gravity g_{0} on the planet.
b) (2 points) Find the maximum height above the ledge reached by the boulder.
c) (2 points) How much time t_{2} does the team have left to escape when they fire their boosters at time t_{0} ?
The astronauts use their main and emergency boosters, which together (for times $t>t_{0}$) give the ship a total vertical acceleration (in $\left.m / \sec ^{2}\right)$ of $a\left(t^{\prime}\right)=A\left(1=e^{\left(t^{\prime} / \tau\right)}\right)$, where $\tau=5 \mathrm{sec}$ and $t^{\prime}=t-t_{0}$. Note that A already includes the planet's gravitational acceleration g_{0}.
d) (2 points) Find an expression for the speed of the ship $U\left(t^{\prime}\right)$ for $t_{2}>t^{\prime}>0$. You may leave your answer in terms of A, τ and t^{\prime}.
e) If the base of the ship must reach a height of 1 km above the point where the boulder strikes the ledge to avoid being destroyed by flying debris, find the minimum value of A that will allow the team to escape.

