QP19

Robin Hood is standing at the foot of a hill which makes an angle α with the horizontal. For practicing his recently learnt Phys 1a formulae, he shoots an arrow from a point on the hill, with initial velocity v_{0} and under an angle $\beta>\alpha$ with the horizontal. Neglect both the size of the arrow and air friction.
a) (2 points) Express the time needed for the arrow to land in terms of α, β, v_{0} and the gravitational acceleration g.
b) (1 point) Show that the distance between the origin and the place of landing is given by

$$
l=\frac{2 v_{0}^{2}}{g \cos ^{2}(\alpha)} \sin (\beta-\alpha) \cos (\beta)
$$

