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Who wrote this thoughts?

And with respect to the general cause, it seems manifest to me that it is
none other than God himself, who, in the beginning, created matter along with
motion and rest, and now by his ordinary concourse alone preserves in the
whole the same amount of motion and rest that he placed in it. For although
motion is nothing in the matter moved but its mode, it has yet a certain and
determinate quantity, which we easily see may remain always the same in the
whole universe, although it changes in each of the parts of it.

? Newton?

)
Galileo?

Aristotle?




Advanced Area
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Descartes
Veer padhe ded pomers

Said in 1644
(Newton was 2 years old ©)



First example

Example 1
A 180-lb man tries to step out of a 90-Ib canoe, initially at rest, onto a lakeside pier.
What happens if he tries to step 2 ft laterally without holding on to the pier?




First Example




Second Example

If the influence of external forces is negligible

L mv, + M,V + AR + oo 4 myv, = const.

A

2. A projectile explodes while in flight. Fragments are blown in all directions as
shown in the sketch. What can you say about the motion of the center of mass of
the system after the explosion?

\ _ Where will the CM go?
)
\

/




Summary of Main Formulae: Collisions

>P, =3P,

Elastic: K;=K, (One more equation)

Inelastic: K; > K,
If it is totally inelastic, the bodies end up together and
we’ll have one final velocity only)

INTERESTING FACT: In relativity, things will become more
interesting due to E=mc?!




Third Exampl

m hangs from a thin string
wn in the figure. The cart and




7. TWO CARIS AND A POLE

This problem is interesting, because it mixes linear momentum, forces and energy conservation.
The first question requires to find the final speed of a totally inelastic collision:
A"Iﬁ

29 V= —V.
(29) M + M2




7. T'WO CARIS AND A POLE

This problem is interesting, because it mixes linear momentum, forces and energy conservation.
The first question requires to find the final speed of a totally inelastic collision:

M,
29 V'= —V.
( ) A’!l + ."112

The second question is solved more easily in the inertial frame of the two carts after the collision. The
reason is that, even though the mass of the pole m starts its circular motion with the speed V' (the initial

speed of the cart of mass M,), it is also moving along with the carts, so it is in fact, the relative speed
with respect to them that is available to turn.




7. T'WO CARIS AND A POLE

This problem is interesting, because it mixes linear momentum, forces and energy conservation.
The first question requires to find the final speed of a totally inelastic collision:

M,
29 V'= —V.
( ) A’!l + ."112

The second guestion is solved more easily in the inertial frame of the two carts after the collision. The
reason is that, even though the mass of the pole m starts its circular motion with the speed V' (the initial

speed of the cart of mass M,), it is also moving along with the carts, so it is in fact, the relative speed
with respect to them that is available to turn.

Morcc;vcr, let’s remember that the basic eguation for a pole to complete a circle is that the tension is
0 only at the highest point. If it were before that point, the mass m would not complete the circle. If it
would be positive, it would complete it, but with more speed than necessary. Then

(30) T(=0)—mg=-m?/R, =  wp=+gR




After the collision, conservation of energy can be used to find out the necessary initial speed to complete
a circle:
, \ 1, ) 5
(31) Eyo= Emvl;p +~mg(2R) = ém_qR.




After the collision, conservation of energy can be used to find out the necessary initial speed to complete

a circle:
-

1 o
(31) Epo= Emvﬁ-p +mg(2R) = Eng'

As mentioned before, the initial speed of the little ball available to turn around is
(32) ) =¥ — V' = \!2"/(4‘!1 <+ A’!z)
So that
1 VM 5 M
33 Eio= - i = —mgR.=> V=1 —‘) SgR.
(33) RO M) 2 ( ")V




After the collision, conservation of energy can be used to find out the necessary initial speed to complete

a circle:
[

(31) Eio= %mv(’;p +mg(2R) = ;ng'

As mentioned before, the initial speed of the little ball available to turn around is

(32) ) =¥ — V' = \!QV/(J\Il -+ A’!g)
So that

1 VM2 5 M
33 Eig= - 2 = mgR.=> V=11 —‘) 5gR.
(33) ST MM+ M2 2 ( L) Ve
Two checks:

e dimensions make sense,
e the larger the ratio M, /M, is, the higher the initial speed V' needs to be.

That makes sense, because the larger M, is with respect to M,, the least will it be slowed down, and
the least impulse will have the mass of the pole to complete the circle.




Fourth Example




The first question only requires to write down (v, is negative):
(34) m ¥, + matly, = MU => 3k, — ky, = 6.




8. THE BROKEN ROCKET

The first gquestion only requires to write down (v is negative):
(32) mll-;) + '”1217‘2 = MV - 3k1 - k,z =

The second part is also a direct application of known formulas. The only detail is to add E:

N 1.,., 1, 1 ., M,f ., ki
(3'3) E+ 54\1”2 = -2-m1vf -+ 5"2,21)3 = -I-vz (kf + ?)

Now, setting £ = 5/2Mv*: 12 = ki + k3/3. The equations to solve are:
2
(34) 6 = 3k, — ka, l2=k,+%"—=>k1=3,k2=3

-
-




Fifth Example

Example 7

A compact car with mass m, = 1300 kg, and a sports car with mass mg = 1000 kg
approach an intersection, each traveling at 14 m/s. They collide and move off together
at an angle @ as indicated in the diagram. Find

(a) the angle 8,

(b) the speed of the entangled cars after the collision,

(c) the amount of energy dissipated in the collision.




mav = (my + mg)V cos 6

where both cars have the same speed after the collision. Because we have two unknowns,
V and 0, we need another equation before we can solve for them. In the y direction,
conservation of momentum implies

mgv = (my + mg)V sin 0.
Dividing our second equation by the first, we can solve for 0:

m sin 6
B — = tan 0,
m, cos®

tan 6 = 1000/1300,

which leads to 6 = 37.6°. As a check, note that 8 — 0 in the limit mg/m, — 0, and
8 — w/2 in the limit m,/mg — 0, consistent with the expectation that if one object has
nearly all the mass, the combined system will continue to move in the same direction as
the initial heavy object after the collision.

To find the speed of the cars after impact, we can use either momentum equation
and solve for V; the result is V = 10 m/s. The difference between the initial kinetic
energy and the final kinetic energy is the energy dissipated:

energy dissipated = (3mv® + jmgv?) — J(ms + mg)V?,

which turns out to be 1.1 X 10° J,



Sixth Example

14, A 0.03-kg mass traveling at 0.08 m/s collides head-on with a 0.05-kg mass which
is initially at rest. If the collision is elastic, find the speed of each mass after the
collision.

(SEE FINAL SLIDES ON THE ELASTIC COLLISION OF PARTICLES)



Seventh Example

7. Benjamin Thompson (Count Rumford) also used a method for determining the
speed of a bullet or shell when it reaches the target. The bullet is fired horizon-
tally into a block of wood mounted as a pendulum. The bullet stops in the wood,
and the subsequent swing of the pendulum is measured. If the bullet has mass m
and initial velocity v and the block has mass M,

F
T

:(
|
=

(@) what is the horizontal velocity V of the pendulum just after impact?

(b) Show that kinetic energy is not conserved during the impact, and use this result
to find the heat generated during the impact.

(¢) Find v in terms of m, M, and the height # of the pendulum swing.

NO SOLUTION PROVIDED. YOU SHOULD BE ABLE TO SOLVE IT
WITHOUT ANY BIG ISSUES




Collisions viewed from the
Center of Mass reference frame

dr

v = —
7 =7V = MZm,-v,-.

p(o( = 0 — Zmi\’,f = 0

K=K + %Mv’.

In other words, the kinetic energy that may be exchanged in
a collision is not all, but the relative to the center of mass.



Eight Example

Exampie 9
A hydrogen atom of mass my and initial velocity v, in the laboratory collides with an

electron that has mass m, and is initially at rest. What fraction of the initial laboratory
kinetic energy is available to increase the internal energy of the atom by an amount AE?



Final Test Time

In the center-of-mass frame, all of the energy is available. A conversion
K' = AE

is possible. The kinetic energy in the laboratory frame is initially %mﬂvg and is related
to K’ by Eq. (11.32):

1 |
imyvg = K' + 1(my + m.)9%

According to Eq. (11.26), the center-of-mass velocity is



Final Test Time

25. In a nuclear fission reactor, neutrons emitted at high speed in the fission process
must be slowed down by collisions with inert nuclei such as '2C so that they may
induce further fission events.

A fast neutron of initial velocity vl collides elastically with a stationary '2C nu-
cleus.

(@) What is the initial speed of each particle in the center-of-mass frame?
(b) If the 2C nucleus scatters into an angle 9 in the center of mass, show that its
final velocity in the laboratory frame is one-thirteenth of the vector

vo(l = cos B)i + v, sin 6).



my v
9= —=H0
my + m,.

Eliminating 7 from the previous two equations, we find

myvg - K mfvg
2 2my + m,)’

which, by rearrangement, becomes

2
K.=m(,_L)
2 my + m,

_ ml-!mcvg
Z(mu -+ me) ’

Thus only a fraction
K me 1

—_

K my+ m, = 1837

of the laboratory-frame kinetic energy is available for conversion. Almost all of the initial
kinetic energy is tied up in center-of-mass motion; a light electron cannot slow down a
heavy proton very much.

If it is the hydrogen atom that is initially at rest, and the electron that has the initial
momentum, the center of mass moves much more slowly than the electron, being dom-
inated by the heavier proton. In this case a repeat of the above argument shows that
K''/K = myl/(my + m,); almost all of the laboratory-frame energy is available for con-
version.



Final Test Time

(¢) In such an elastic collision, what is the maximum fraction of its laboratory
kinetic energy that the neutron can lose?

(d) If the average energy lost in such a collision is one-half of the maximum possible
loss, what is the average number of collisions a neutron must undergo in order
to reduce its kinetic energy from 1,000,000 eV to 1000 eV?



Let’s use the following notation:
e m mass of the neutron, M mass of the **C.
e v for the neutron speed, e.g., v, initial speed of the neutron and V the speed of the '*C after the
collision.
e Prime quantities refer to the CM reference system.




Let’s use the following notation:
e m mass of the neutron, M mass of the *C.
e v for the neutron speed, e.g., v, initial speed of the neutron and V the speed of the C after the
collision.
e Prime quantities refer to the CM reference system.

The first question is easy to solve, but it reminds us the steps to follow in several problems of collisions:

2o to the CM reference system: solve the collision and come back to the laboratory reference system. The
solution is:

muvy
1 =
(1) e m+ M’
A’! |
(2) v = v— UCM = £ Vi=0- VoM = — Mo

m+M' M+m




Let’s use the following notation:
e m mass of the neutron, M mass of the *C.
e v for the neutron speed, e.g., v, initial speed of the neutron and V the speed of the '*C after the
collision.
e Prime quantities refer to the CM reference system.

The first question is easy to solve, but it reminds us the steps to follow in several problems of collisions:

2o to the CM reference system: solve the collision and come back to the laboratory reference system. The
solution is:

. myg
(1) Ve = m+ M
Muvy muvy
/ -— — - -_— 4 -— — WA — —
2) Vo= vovem=moyp Vi =0-vem = -l

Notice that, in the reference system of CM, the total linear momentum is 0: ¢/, ... = Pioc = 0.




For the second question, we first solve for the speed of the **C in the CM reference system. This is
simple realizing that the outgoing angle in the CM has been given to us: 8.




For the second question, we first solve for the speed of the C in the CM reference system. This is
simple realizing that the outgoing angle in the CM has been given to us: 4.

Notice that the speeds are equal, not the velocities. The negative sign in front of the first term is due
to the fact that the "*C was moving towards the ‘left’, with V' = —muy /(M + m).




For the second question, we first solve for the speed of the C in the CM reference system. This is
simple realizing that the outgoing angle in the CM has been given to us: 4.

Notice that the speeds are equal, not the velocities. The negative sign in front of the first term is due
to the fact that the *C was moving towards the ‘left’, with V' = —muy /(M + m).

Now, to go back to the laboratory reference system, we do:

(4) ‘7 = ‘7' + Uonm = (V'cos0 . g 'UC.\!) ;'{' V'sin 03




Substituting the expressions found so far, we obtain the expression shown in the problem.

(

)

__niy B 2. inpn s
V"m+M [(l cos )i smej]

The factor 1/13 comes from m/(m + M) with M = 12m.



For the third part of the problem, we can not use the theorem that says that the greatest amount
of kinetic energy available to be extracted in a collision is the kinetic energy of the particles in the CM
reference system. This is because this is an elastic collision, and that limit happens for an inelastic collision.
Taking into account that the collision is elastic, we can write:




For the third part of the problem, we can not use the theorem that says that the greatest amount
of kinetic energy available to be extracted in a collision is the kinetic energy of the particles in the CM
reference system. This is because this is an elastic collision, and that limit happens for an inelastic collision.
Taking into account that the collision is elastic, we can write:

1 . 1 ‘ 1
(6) Epo= Ep,. §mvf, = §mvf + 54\‘!‘/2.




For the third part of the problem, we can not use the theorem that says that the greatest amount
of kinetic energy available to be extracted in a collision is the kinetic energy of the particles in the CM
reference system. This is because this is an elastic collision, and that limit happens for an inelastic collision.
Taking into account that the collision is elastic, we can write:

(6) Ek.() — Ek.ls

We now notice that it is not necessary to derive vy, the final velocity of the neutron in the laboratory
reference system. In order to know the loss of kinetic energy of the neutron, we see that is is precisely the
kinetic energy of the **C after the collision: jmuj — jmuvi = JMVZ




For the third part of the problem, we can not use the theorem that says that the greatest amount
of kinetic energy available to be extracted in a collision is the kinetic energy of the particles in the CM
reference system. This is because this is an elastic collision, and that limit happens for an inelastic collision.
Taking into account that the collision is elastic, we can write:

(6) Ek.o = Ek.l, %mvf, - %mvf + %4\‘1‘/2.

We now notice that it is not necessary to derive vy, the final velocity of the neutron in the laboratory
reference system. In order to know the loss of kinetic energy of the neutron, we see that is is precisely the
kinetic energy of the *C after the collision: Jmui — jmevi = JMVZ

The problem asks about the mazimum possible loss. That will then happen when V is maximum. The
magnitude of V is proportional to (1 — cos#)* +sin® 8 = 2(1 — cos#). Therefore, V is maximum for § = =,
For this case, we have that the loss of the neutron kinetic energy is:




The problem asks about the mazimum possible loss. That will then happen when V' is maximum. The
magnitude of V is proportional to (1 - cos#)* +sin® # = 2(1 - cos#). Therefore, V is maximum for 8 = =.
For this case, we have that the loss of the neutron kinetic energy is:

- 2 _ 1 4m2 2 l 2 { 4m ‘!
(7) Bl jons = MV’"‘“ N U (m + M)? o = 3™ (m+M)?|"




The problem asks about the mazximum possible loss, That will then happen when V' is maximum. The
magnitude of V is proportional to (1 - cos8)* +sin’ # = 2(1 - cosf)). Therefore, V is maximum for § = .
For this case, we have that the loss of the neutron kinetic energy is:

4m* 2L ,[ mu]

—_ J 4 — -
(7) Bt = 5 MV, " (m+ M)E° ™ 2™ | T+ M)

Where | have written the loss in terms of the initial kinetic energy.

Notice that the factor does not depend on the initial velocity of the neutron. It is 4mM/(m + M)*.
Therefore, it will be the same after the following collision, regardless of the final speed of the neutron after
each collision. Moreover, notice that the factor becomes largest for M = m. This tells us that indeed to
slow down neutrons, it's much more efficient to use materials with protons, like paraffin.




The problem asks about the mazimum possible loss, That will then happen when V' is maximum. The
magnitude of V is proportional to (1 - cos8)* +sin’ # = 2(1 - cosf)). Therefore, V is maximum for § = .
For this case, we have that the loss of the neutron kinetic energy is:

4m*

(m +M)?v

M

dmM ]

2=-l-mv2
O 27 [ (m+ M)?

_ Ly 1
(7) Ek.lw’-* o 2‘wvm&x - 9

Where | have written the loss in terms of the initial kinetic energy.

Notice that the factor does not depend on the initial velocity of the neutron. It is 4mM/(m ~ M)
Therefore, it will be the same after the following collision, regardless of the final speed of the neutron after
each collision. Moreover, notice that the factor becomes largest for M = m. This tells us that indeed to
slow down neutrons, it's much more efficient to use materials with protons, like paraffin.

2



The last question asks for the number of collisions that will be necessary to decrease the initial kinetic
energy of the neutron by a factor of 1000. Therefore we have to solve an equation like:
amM 1Y 10
8 1 =05% —————| =— =103,
(®) Prmr M| T
where the right hand side shows the loss of going from 1,000,000 ¢V to 1,000 ¢V. And the factor 0.5 has
been included to follow the instructions in the exercise. The solution is (M = 12m):
3
C N=-— = 45. 3.
(J) d log(1—24/169) 45.1 = 45
45 collisions are necessary. In the case of paraffin, where M = m, N is much smaller, N = 10. The reaction
might be stopped, rather than slowed down.




