FP9

Two masses are connected by a string as shown. m_{2} slides without friction on a fixed incline at an angle of 30° with respect to the horizontal. Neglect the mass and friction of the pulleys, and the mass of the string.
a) (2 points) Find the ratio of the masses m_{2} / m_{1} such that the masses will remain stationary, if they are initially at rest.
b) (1 points) If the mass m_{2} moves a small distance ΔD_{2} along the incline, find the distance ΔD_{1} that the mass m_{1} moves.
c) (3 points) If $m_{2}=2 m_{1}$, adn the masses are initially at rest as shown, find the acceleration of m_{2}.
d) (3 points) If m_{2} slides a distance, D down the incline before encountering the stop at the bottom, what are the speeds of m_{2} and m_{1} just before encountering the stop?
e) (1 point) WHen the moments of interia of the pulleys are taken into account, do the speeds of the masses in part (d) increase, decrease, or remain the same?

