

A rudimentary transmission can be made by forcing two uniform cylindrical wheels with frictional coefficient μ together. The wheels have masses m_{1} and m_{2}, and both have radius R. Initially, wheel 1 is rotating with angular velocity ω_{1} and wheel 2 is at rest. The wheels are being forced together with a constant force F, uniformly distributed across each wheel's face.
a) (3 points) When the wheels are first brought together, what is the magnitude of the torque that wheel 1 applies to wheel 2 via friction? Hint: split wheel 1 up into infinitesimal concentric rings of radius r and width $d r$, and calculate the torque exerted by them.
If you could not answer part (a) use $r=\mu F R$ in what follows.
b) (2 points) What is the final angular velocity, ω_{f}, of the two wheels (in terms of constants and ω_{1})?
c) (3 points) How long does it take to reach ω_{f} ?
d) (2 points) What was the change in energy of the system as a fraction of the initial energy? Where did this energy go?

